ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron scattering study of commensurate magnetic ordering in single crystal CeSb$_2$

135   0   0.0 ( 0 )
 نشر من قبل Ben-Qiong Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Temperature and field-dependent magnetization $M(H,T)$ measurements and neutron scattering study of a single crystal CeSb$_2$ are presented. Several anomalies in the magnetization curves have been confirmed at low magnetic field, i.e., 15.6 K, 12 K, and 9.8 K. These three transitions are all metamagnetic transitions (MMT), which shift to lower temperatures as the magnetic field increases. The anomaly at 15.6 K has been suggested as paramagnetic (PM) to ferromagnetic (FM) phase transition. The anomaly located at around 12 K is antiferromagnetic-like transition, and this turning point will clearly split into two when the magnetic field $Hgeq0.2$ T. Neutron scattering study reveals that the low temperature ground state of CeSb$_2$ orders antiferromagnetically with commensurate propagation wave vectors $textbf{k}=(-1,pm1/6,0)$ and $textbf{k}=(pm1/6,-1,0)$, with Neel temperature $T_Nsim9.8$ K. This transition is of first-order, as shown in the hysteresis loop observed by the field cooled cooling (FCC) and field cooled warming (FCW) processes.



قيم البحث

اقرأ أيضاً

A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe$_2$As$_2$ reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at $T_texttt{O}$ = $T_texttt {N}$ = (201.5 $pm$ 0.25) K. The observation of coexisting O-T phases over a finite temperature range at the transition and the sudden onset of the O distortion provide strong evidences that the structural transition is first order. The simultaneous appearance and disappearance within 0.5 K upon cooling and within 0.25 K upon warming, respectively, indicate that the magnetic and structural transitions are intimately coupled. We find that the hysteresis in the transition temperature extends over a 1-2 K range. Based on the observation of a remnant orthorhombic phase at temperatures higher than emph{T}$_texttt{O}$, we suggest that the T-O transition may be an order-disorder transition.
We have studied the frustrated system YBaCo4O7 generally described as an alternating stacking of Kagome and triangular layers of magnetic ions on a trigonal lattice, by single crystal neutron diffraction experiments above the Neel ordering transition . Experimental data reveals pronounced magnetic diffuse scattering, which is successfully modeled by direct Monte-Carlo simulations. Long-range magnetic correlations are found along the c-axis, due to the presence of corner-sharing bipyramids, creating quasi one-dimensional order at finite temperature. In contrast, in the Kagome layers ab-plane, the spin-spin correlation function -displaying a short-range 120 degrees configuration- decays rapidly as typically found in spin-liquids. YBaCo4O7 experimentally realizes a new class of two-dimensional frustrated systems where the strong out-of-plane coupling does not lift the in-plane degeneracy, but instead act as an external field.
207 - D. Reznik , I. Ahmadova 2020
This article introduces software called Phonon Explorer that implements a data mining workflow for large datasets of the neutron scattering function, S(Q, {omega}), measured on time-of-flight neutron spectrometers. This systematic approach takes adva ntage of all useful data contained in the dataset. It includes finding Brillouin zones where specific phonons have the highest scattering intensity, background subtraction, combining statistics in multiple Brillouin zones, and separating closely spaced phonon peaks. Using the software reduces the time needed to determine phonon dispersions, linewidths, and eigenvectors by more than an order of magnitude.
329 - Y. Su , P. Link , A. Schneidewind 2008
Neutron diffraction experiments have been carried out on a Sn-flux grown BaFe2As2 single crystal, the parent compound of the A-122 family of FeAs-based high-Tc superconductors. A tetragonal to orthorhombic structural phase transition and a three dime nsional long-range antiferromagnetic ordering of the iron moment, with a unique magnetic propagation wavevector k = (1, 0, 1), have been found to take place at ~90 K. The magnetic moments of iron are aligned along the long a axis in the low temperature orthorhombic phase (Fmmm with b<a<c). Our results thus demonstrate that the magnetic structure of BaFe2As2 single crystal is the same as those in other A-122 iron pnictides compounds. We argue that the tin incorporation in the lattice is responsible for a smaller orthorhombic splitting and lower Neel temperature T_N observed in the experiment.
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur e below $T sub{N2}$ is unambiguously determined to be a fully 3-dimensional proper screw. Between $T sub{N1}$ and $T sub{N2}$ antiferromagnetic order is found that is essentially 2-dimensional. In this narrow temperature range, magnetic near neighbor correlations are still long range in the ($H,K$) plane, whereas nearest neighbors along the $L$-direction are uncorrelated. Thus, the multiferroic state is realized only in the low-temperature 3-dimensional state and not in the 2-dimensional state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا