ترغب بنشر مسار تعليمي؟ اضغط هنا

Band dependence of charge density wave in quasi-one-dimensional Ta2NiSe7 probed by orbital magnetoresistance

106   0   0.0 ( 0 )
 نشر من قبل Hui Xing
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structure. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here we report our results of magnetoresistance (MR) on Ta2NiSe7. A breakdown of the Kohlers rule is found upon entering the CDW state. Concomitantly, a clear change of curvature in the field dependence of MR is observed. We show that the curvature change is well described by two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the $p$ orbitals from Se atoms dominate the change in transport through the CDW transition.

قيم البحث

اقرأ أيضاً

We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observe d in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW.
The experimental STM images for the CDW phase of the blue bronze RbMoO3 have been successfully explained on the basis of first-principles DFT calculations. Although the density of states near the Fermi level strongly concentrates in two of the three types of Mo atoms Mo-II and Mo-III, the STM measurement mostly probes the contribution of the uppermost O atoms of the surface, associated with the Mo-IO6 octahedra. In addition, it is found that the surface concentration of Rb atoms plays a key role in determining the surface nesting vector and hence the periodicity of the CDW modulation. Significant experimental inhomogeneities of the b* surface component of the wavevector of the modulation, probed by STM, are reported. The calculated changes in the surface nesting vector are consistent with the observed experimental inhomogeneities.
We report measurements of the magnetoresistance in the charge density wave (CDW) state of rare-earth tritellurides, namely TbTe$_3$ and HoTe$_3$. The magnetic field dependence of magnetoresistance exhibits a temperature dependent crossover between a conventional quadratic law at high $T$ and low $B$ and an unusual linear dependence at low $T$ and high $B$. We present a quite general model to explain the linear magnetoresistance taking into account the strong scattering of quasiparticles on CDW fluctuations in the vicinity of hot spots of the Fermi surface (FS) where the FS reconstruction is the strongest.
Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using the ir dissipation-less nature and spin-momentum locking. Here we introduce a transition-metal dichalcogenide VTe$_2$, that hosts a charge density wave (CDW) coupled with the band inversion involving V3$d$ and Te5$p$ orbitals. Spin- and angle-resolved photoemission spectroscopy with first-principles calculations reveal the huge anisotropic modification of the bulk electronic structure by the CDW formation, accompanying the selective disappearance of Dirac-type spin-polarized topological surface states that exist in the normal state. Thorough three dimensional investigation of bulk states indicates that the corresponding band inversion at the Brillouin zone boundary dissolves upon CDW formation, by transforming into anomalous flat bands. Our finding provides a new insight to the topological manipulation of matters by utilizing CDWs flexible characters to external stimuli.
Charge density waves (CDWs) are symmetry-broken ground states that commonly occur in low-dimensional metals due to strong electron-electron and/or electron-phonon coupling. The non-equilibrium carrier distribution established via photodoping with fem tosecond laser pulses readily quenches these ground states and induces an ultrafast insulator-to-metal phase transition. To date, CDW melting has been mainly investigated in the single-photon and tunneling regimes, while the intermediate multi-photon regime has received little attention. Here we excite one-dimensional indium wires with a CDW gap of ~300meV with mid-infrared pulses at 190meV with MV/cm field strength and probe the transient electronic structure with time- and angle-resolved photoemission spectroscopy (tr-ARPES). We find that the CDW gap is filled on a timescale short compared to our temporal resolution of 300fs and that the phase transition is completed within ~1ps. Supported by a minimal theoretical model we attribute our findings to multi-photon absorption across the CDW gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا