ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy

223   0   0.0 ( 0 )
 نشر من قبل Kenan Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW.

قيم البحث

اقرأ أيضاً

We studied the electronic structure of PtPb$_{4}$ using laser angle-resolved photoemission spectroscopy(ARPES) and density functional theory(DFT) calculations. This material is closely related to PtSn$_{4}$, which exhibits exotic topological properti es such as Dirac node arcs. Fermi surface(FS) of PtPb$_{4}$ consists of two electron pockets at the center of the Brillouin zone(BZ) and several hole pockets around the zone boundaries. Our ARPES data reveals significant Rashba splitting at the $Gamma$ point in agreement with DFT calculations. The presence of Rashba splitting may render this material of potential interest for spintronic applications.
In the present work, we investigate the electronic structure of the two-dimensional (2D) ferromagnet Cr2Ge2Te6 by photoemission spectroscopy and ab initio calculations. Our results demonstrate the presence of multiple hole-type bands in the vicinity of the Fermi level indicating that the material can support high electrical conductivity by manipulating the chemical potential. Also, our photon energy dependent angle resolved photoemission experiment revealed that several of the hole bands exhibit weak dispersion with varied incident photon energy providing experimental signature for its two dimensionality. These findings can pave the way for further studies towards the application of Cr2Ge2Te6 in electronic devices.
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structure. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray and elect ron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here we report our results of magnetoresistance (MR) on Ta2NiSe7. A breakdown of the Kohlers rule is found upon entering the CDW state. Concomitantly, a clear change of curvature in the field dependence of MR is observed. We show that the curvature change is well described by two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the $p$ orbitals from Se atoms dominate the change in transport through the CDW transition.
187 - C. Q. Han , M. Y. Yao , X. X. Bai 2014
Electronic structures of single crystalline black phosphorus were studied by state-of-art angleresolved photoemission spectroscopy. Through high resolution photon energy dependence measurements, the band dispersions along out-of-plane and in-plane di rections are experimentally determined. The electrons were found to be more localized in the ab-plane than that is predicted in calculations. Beside the kz-dispersive bulk bands, resonant surface state is also observed in the momentum space. Our finds strongly suggest that more details need to be considered to fully understand the electronic properties of black phosphorus theoretically.
The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two dimensional heterostructure devices. The nature of the ba nd gap (direct or indirect) for bulk, few and single layer forms of ReS$_2$ is of particular interest, due to its comparatively weak inter-planar interaction. However, the degree of inter-layer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS$_2$ using high resolution angle resolved photoemission spectroscopy (ARPES). We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 $m_e$) than along them (1.6 $m_e$), in good agreement with density functional theory calculations. An appreciable inter-plane interaction results in an experimentally-measured difference of ~100-200 meV between the valence band maxima at the Z point (0,0,1/2) and the $Gamma$ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at $Gamma$, implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the direct or indirect gap nature of this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا