ﻻ يوجد ملخص باللغة العربية
Charge density waves (CDWs) are symmetry-broken ground states that commonly occur in low-dimensional metals due to strong electron-electron and/or electron-phonon coupling. The non-equilibrium carrier distribution established via photodoping with femtosecond laser pulses readily quenches these ground states and induces an ultrafast insulator-to-metal phase transition. To date, CDW melting has been mainly investigated in the single-photon and tunneling regimes, while the intermediate multi-photon regime has received little attention. Here we excite one-dimensional indium wires with a CDW gap of ~300meV with mid-infrared pulses at 190meV with MV/cm field strength and probe the transient electronic structure with time- and angle-resolved photoemission spectroscopy (tr-ARPES). We find that the CDW gap is filled on a timescale short compared to our temporal resolution of 300fs and that the phase transition is completed within ~1ps. Supported by a minimal theoretical model we attribute our findings to multi-photon absorption across the CDW gap.
We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling streng
Unconventional quasiparticle excitations in condensed matter systems have become one of the most important research frontiers. Beyond two- and fourfold degenerate Weyl and Dirac fermions, three-, six- and eightfold symmetry protected degeneracies hav
Low dimensional systems with a vanishing band-gap and a large electron-hole interaction have been proposed to be unstable towards exciton formation. As the exciton binding energy increases in low dimension, conventional wisdom suggests that excitonic
We report experimental evidence of charge density wave (CDW) transition in monolayer 1T-VTe$_2$ film. 4$times$4 reconstruction peaks are observed by low energy electron diffraction below the transition temperature $T_{CDW}$ = 186 K. Angle-resolved ph
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structure. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray and elect