ﻻ يوجد ملخص باللغة العربية
To choose a suitable multiwinner voting rule is a hard and ambiguous task. Depending on the context, it varies widely what constitutes the choice of an ``optimal subset of alternatives. In this paper, we provide a quantitative analysis of multiwinner voting rules using methods from the theory of approximation algorithms---we estimate how well multiwinner rules approximate two extreme objectives: a representation criterion defined via the Approval Chamberlin--Courant rule and a utilitarian criterion defined via Multiwinner Approval Voting. With both theoretical and experimental methods, we classify multiwinner rules in terms of their quantitative alignment with these two opposing objectives. Our results provide fundamental information about the nature of multiwinner rules and, in particular, about the necessary tradeoffs when choosing such a rule.
Justified representation (JR) is a standard notion of representation in multiwinner approval voting. Not only does a JR committee always exist, but previous work has also shown through experiments that the JR condition can typically be fulfilled by g
Computational and economic results suggest that social welfare maximization and combinatorial auction design are much easier when bidders valuations satisfy the gross substitutes condition. The goal of this paper is to evaluate rigorously the folklor
We study equilibria of markets with $m$ heterogeneous indivisible goods and $n$ consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the
Shortlisting is the task of reducing a long list of alternatives to a (smaller) set of best or most suitable alternatives from which a final winner will be chosen. Shortlisting is often used in the nomination process of awards or in recommender syste
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of