ﻻ يوجد ملخص باللغة العربية
This work is devoted to the algebraic and arithmetic properties of Rankin-Cohen brackets allowing to define and study them in several natural situations of number theory. It focuses on the property of these brackets to be formal deformations of the algebras on which they are defined, with related questions on restriction-extension methods. The general algebraic results developed here are applied to the study of formal deformations of the algebra of weak Jacobi forms and their relation with the Rankin-Cohen brackets on modular and quasimodular forms.
For any non-negative integer v we construct explicitly [v/2]+1 independent covariant bilinear differential operators from J_{k,m} x J_{k,m} to J_{k+k+v,m+m}. As an application we construct a covariant bilinear differential operator mapping S_k^{(2)}
Eichler and Zagier developed a theory of Jacobi forms to understand and extend Maass work on the Saito-Kurokawa conjecture. Later Skoruppa introduced skew-holomorphic Jacobi forms, which play an important role in understanding liftings of modular for
Families of quasimodular forms arise naturally in many situations such as curve counting on Abelian surfaces and counting ramified covers of orbifolds. In many cases the family of quasimodular forms naturally arises as the coefficients of a Taylor ex
We show that Hidas families of $p$-adic elliptic modular forms generalize to $p$-adic families of Jacobi forms. We also construct $p$-ad
Weak Jacobi forms of weight $0$ and index $m$ can be exponentially lifted to meromorphic Siegel paramodular forms. It was recently observed that the Fourier coefficients of such lifts are then either fast growing or slow growing. In this note we inve