ﻻ يوجد ملخص باللغة العربية
For any non-negative integer v we construct explicitly [v/2]+1 independent covariant bilinear differential operators from J_{k,m} x J_{k,m} to J_{k+k+v,m+m}. As an application we construct a covariant bilinear differential operator mapping S_k^{(2)} x S^{(2)}_{k} to S^{(2)}_{k+k+v}. Here J_{k,m} denotes the space of Jacobi forms of weight k and index m and S^{(2)}_k the space of Siegel modular forms of degree 2 and weight k. The covariant bilinear differential operators constructed are analogous to operators already studied in the elliptic case by R. Rankin and H. Cohen and we call them Rankin-Cohen operators.
This work is devoted to the algebraic and arithmetic properties of Rankin-Cohen brackets allowing to define and study them in several natural situations of number theory. It focuses on the property of these brackets to be formal deformations of the a
Using topological string techniques, we compute BPS counting functions of 5d gauge theories which descend from 6d superconformal field theories upon circle compactification. Such theories are naturally organized in terms of nodes of Higgsing trees. W
Eichler and Zagier developed a theory of Jacobi forms to understand and extend Maass work on the Saito-Kurokawa conjecture. Later Skoruppa introduced skew-holomorphic Jacobi forms, which play an important role in understanding liftings of modular for
The aim of this paper is to prove a normal form Theorem for Dirac-Jacobi bundles using the recent techniques from Bursztyn, Lima and Meinrenken. As the most important consequence, we can prove the splitting theorems of Jacobi pairs which was proposed
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $Q(sqrt{5})$. In those examples, w