Families of quasimodular forms arise naturally in many situations such as curve counting on Abelian surfaces and counting ramified covers of orbifolds. In many cases the family of quasimodular forms naturally arises as the coefficients of a Taylor ex
pansion of a Jacobi form. In this note we give examples of such expansions that arise in the study of partition statistics. The crank partition statistic has gathered much interest recently. For instance, Atkin and Garvan showed that the generating functions for the moments of the crank statistic are quasimodular forms. The two variable generating function for the crank partition statistic is a Jacobi form. Exploiting the structure inherent in the Jacobi theta function we construct explicit expressions for the functions of Atkin and Garvan. Furthermore, this perspective opens the door for further investigation including a study of the moments in arithmetic progressions. We conduct a thorough study of the crank statistic restricted to a residue class modulo 2.
Eichler and Zagier developed a theory of Jacobi forms to understand and extend Maass work on the Saito-Kurokawa conjecture. Later Skoruppa introduced skew-holomorphic Jacobi forms, which play an important role in understanding liftings of modular for
ms and Jacobi forms. In this paper, we explain a relation between holomorphic Jacobi forms and skew-holomorphic Jacobi forms in terms of a group cohomology. More precisely, we introduce an isomorphism from the direct sum of the space of Jacobi cusp forms on $Gamma^J$ and the space of skew-holomorphic Jacobi cusp forms on $Gamma^J$ with the same half-integral weight to the Eichler cohomology group of $Gamma^J$ with a coefficient module coming from polynomials.
A variant of Brauers induction method is developed. It is shown that quartic p-adic forms with at least 9127 variables have non-trivial zeros, for every p. For odd p considerably fewer variables are needed. There are also subsidiary new results concerning quintic forms, and systems of forms.
Generalizing the completed cohomology groups introduced by Matthew Emerton, we define certain spaces of ordinary $p$-adic automorphic forms along a parabolic subgroup and show that they interpret all classical ordinary automorphic forms.
It is shown that a system of $r$ quadratic forms over a ${mathfrak p}$-adic field has a non-trivial common zero as soon as the number of variables exceeds $4r$, providing that the residue class field has cardinality at least $(2r)^r$.