ﻻ يوجد ملخص باللغة العربية
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semimetal and has drawn enormous interests. In this report, we have investigated the lattice dynamics and electron-phonon interaction in single crystalline ZrSiS using Raman spectroscopy. Polarization and angle resolved measurements have been performed and the results have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength and temperature dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scatterings through inter-band transitions. Our high-pressure Raman studies reveal vibrational anomalies, which were further investigated from the high-pressure synchrotron x-ray diffraction (HPXRD) spectra. From HPXRD, we have clearly identified pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. The present study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other iso-structural systems.
ZrSiS is the most intensively studied topological nodal-line semimetal candidate, which is proposed to host multiple nodal lines in its bulk electronic structure. However, previous angle-resolved photoemission spectroscopy (ARPES) experiments with va
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
Tunable symmetry breaking plays a crucial role for the manipulation of topological phases of quantum matter. Here, through combined high-pressure magneto-transport measurements, Raman spectroscopy, and X-ray diffraction, we demonstrate a pressure-ind
The topological nodal-line semimetals (NLSMs) possess a loop of Dirac nodes in the k space with linear dispersion, different from the point nodes in Dirac/Weyl semimetals. While the quantum transport associated with the topologically nontrivial Dirac
Dirac semimetal PdTe2 single-crystal temperature-dependent ultrafast carrier and phonon dynamics were studied using ultrafast optical pump-probe spectroscopy. Two distinct carrier and coherent phonons relaxation processes were identified in the 5 K -