ﻻ يوجد ملخص باللغة العربية
Tunable symmetry breaking plays a crucial role for the manipulation of topological phases of quantum matter. Here, through combined high-pressure magneto-transport measurements, Raman spectroscopy, and X-ray diffraction, we demonstrate a pressure-induced topological phase transition in nodal-line semimetal ZrSiS. Symmetry analysis and first-principles calculations suggest that this pressure-induced topological phase transition may be attributed to weak lattice distortions by non-hydrostatic compression, which breaks some crystal symmetries, such as the mirror and inversion symmetries. This finding provides some experimental evidence for crystal symmetry protection for the topological semimetal state, which is at the heart of topological relativistic fermion physics.
ZrSiS is the most intensively studied topological nodal-line semimetal candidate, which is proposed to host multiple nodal lines in its bulk electronic structure. However, previous angle-resolved photoemission spectroscopy (ARPES) experiments with va
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semime
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
Topological materials host fascinating low dimensional gapless states at the boundary. As a prominent example, helical topological edge states (TESs) of two-dimensional topological insulators (2DTIs) and their stacked three-dimensional (3D) equivalen
The nodal line semimetals have attracted much attention due to their unique topological electronic structure and exotic physical properties. A genuine nodal line semimetal is qualified by the presence of Dirac nodes along a line in the momentum space