ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac semimetal PdTe2 temperature-dependent quasiparticle dynamics and electron-phonon coupling

110   0   0.0 ( 0 )
 نشر من قبل Jian-Qiao Meng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dirac semimetal PdTe2 single-crystal temperature-dependent ultrafast carrier and phonon dynamics were studied using ultrafast optical pump-probe spectroscopy. Two distinct carrier and coherent phonons relaxation processes were identified in the 5 K - 300 K range. Quantitative analysis revealed a fast relaxation process ({tau}_f) occurring on a subpicosecond time scale which originated from electron-phonon thermalization. This was followed by a slower relaxation process ({tau}_s) with a time scale of ~ 7-9.5 ps which originated from phonon-assisted electron-hole recombination. Two significant vibrational modes resolved at all measured temperatures and corresponded to Te atoms in-plane (E_g), and out-of-plane (A_1g), motion. As temperature increased both phonon modes softened markedly. A_1g mode frequency monotonically decreased as temperature increased. Its damping rate remained virtually unchanged. As expected, E_g decreased uniformly as temperatures rose. At temperatures above 80 K, there was insignificant change. Test results suggested that pure dephasing played an important role in the relaxation processes. PdTe2 phonon is thought responsible for its superconductive properties. Examining phonons behavior should improve the understanding of its complex superconductivity.

قيم البحث

اقرأ أيضاً

84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SrFe_2As_2 exhibiting spin-density wave (SDW) ordering using optical pump-probe femtosecond spectroscopy. A remarkable critical slowing down of the quasipartic le relaxation dynamics at the SDW transition temperature T_SDW = 200K is observed. From temperature dependence of the transient reflectivity amplitude we determine the SDW-state charge gap magnitude, 2Delta_SDW/k_BT_SDW=7.2+-1. The second moment of the Eliashberg function, lambda<(hbar omega)^2>=110+-10meV^2, determined from the relaxation time above T_SDW, is similar to SmFeAsO and BaFe_2As_2 indicating a rather small electron phonon coupling constant unless the electron-phonon spectral function (alpha^2F(omega) is strongly enhanced in the low-energy phonon region.
The lattice dynamics in Sr$_2$RuO$_4$ has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr$_2$RuO$_4$ exhibit a normal dispersion in contrast to all electronically doped per ovskites studied so far. Evidence for strong electron phonon coupling is found for c-polarized phonons suggesting a close connection with the anomalous c-axis charge transport in Sr$_2$RuO$_4$.
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semime tal and has drawn enormous interests. In this report, we have investigated the lattice dynamics and electron-phonon interaction in single crystalline ZrSiS using Raman spectroscopy. Polarization and angle resolved measurements have been performed and the results have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength and temperature dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scatterings through inter-band transitions. Our high-pressure Raman studies reveal vibrational anomalies, which were further investigated from the high-pressure synchrotron x-ray diffraction (HPXRD) spectra. From HPXRD, we have clearly identified pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. The present study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other iso-structural systems.
107 - Q. Wu , H. X. Zhou , Y. L. Wu 2019
Distinctive superconducting behaviors between bulk and monolayer FeSe make it challenging to obtain a unified picture of all FeSe-based superconductors. We investigate the ultrafast quasiparticle (QP) dynamics of an intercalated superconductor (Li1-x Fex)OHFe1-ySe, which is a bulk crystal but shares a similar electronic structure with single-layer FeSe on SrTiO3. We obtain the electron-phonon coupling (EPC) constant {lambda}A1g (0.22 +/- 0.04), which well bridges that of bulk FeSe crystal and single-layer FeSe on SrTiO3. Moreover, we find that such a positive correlation between {lambda}A1g and superconducting Tc holds among all known FeSe-based superconductors, even in line with reported FeAs-based superconductors. Our observation indicates possible universal role of EPC in the superconductivity of all known categories of iron-based superconductors, which is a critical step towards achieving a unified superconducting mechanism for all iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا