ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain and ferroelectric soft mode induced superconductivity in strontium titanate

121   0   0.0 ( 0 )
 نشر من قبل Kirsty Dunnett
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of strain on superconductivity with particular reference to SrTiO$_3$. Assuming that a ferroelectric mode that softens under tensile strain is responsible for the coupling, an increase in the critical temperature and range of carrier densities for superconductivity is predicted, while the peak of the superconducting dome shifts towards lower carrier densities. Using a Ginzburg-Landau approach in 2D, we find a linear dependence of the critical temperature on strain: if the couplings between the order parameter and strains in different directions differ while their sum is fixed, different behaviours under uniaxial and biaxial (uniform) strain can be understood.

قيم البحث

اقرأ أيضاً

The properties of quantum materials are commonly tuned using experimental variables such as pressure, magnetic field and doping. Here we explore a different approach: irreversible, plastic deformation of single crystals. We show for the superconducto r SrTiO$_3$ that compressive plastic deformation induces low-dimensional superconductivity significantly above the superconducting transition temperature ($T_c$) of undeformed samples, with evidence of superconducting correlations at temperatures two orders of magnitude above the bulk $T_c$. The superconductivity enhancement is correlated with the appearance of self-organized dislocation structures, as revealed by diffuse neutron and X-ray scattering. We also observe signatures of deformation-induced quantum-critical ferroelectric fluctuations and inhomogeneous ferroelectric order via Raman scattering. These results suggest that the strain surrounding the self-organized dislocation structures induces local ferroelectricity and quantum-critical dynamics that strongly influence $T_c$, consistent with a theory of superconductivity enhanced by soft polar fluctuations. More broadly, our results demonstrate the promise of plastic deformation and dislocation engineering as tools to manipulate electronic properties of quantum materials.
Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic and optical properties have been studied for decades, SrTiO$_3$ has recently become a renewed materials research focus catalyzed in part by the discovery of magnetism and superconductivity at interfaces between SrTiO$_3$ and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role in these effects. Moreover, recent signatures of magnetization in gated SrTiO$_3$ have further galvanized interest in the emergent properties of this nominally nonmagnetic material. Here we observe an optically induced and persistent magnetization in oxygen-deficient SrTiO$_{3-delta}$ using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18K, persists for hours below 10K, and is tunable via the polarization and wavelength of sub-bandgap (400-500nm) light. These effects occur only in oxygen-deficient samples, revealing the detailed interplay between magnetism, lattice defects, and light in an archetypal oxide material.
We report on superconductivity in single crystals of SrTiO$_{3-delta}$ with carrier densities $textit{n} < 1.4 times10^{18}cm^{-3}$, where only a single band is occupied. For all samples in this regime, the resistive transition occurs at $T_{c} appro x 65 pm 25 mK$. We observe a zero resistance state for $textit{n}$ as low as $1.03 times10^{17}cm^{-3}$, and a partial resistive transition for $textit{n} = 3.85 times10^{16}cm^{-3}$. We observe low critical current densities, relatively high and isotropic upper critical fields, and an absence of diamagnetic screening in these samples. Our findings suggest an inhomogeneous superconducting state, embedded within a homogeneous high-mobility 3-dimensional electron gas. $T_{c}$ does not vary appreciably when $textit{n}$ changes by more than an order of magnitude, inconsistent with conventional superconductivity.
Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the first instance of the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO$_{2}$ thin films on (110)-oriented TiO$_{2}$ substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of $d$ orbitals.
102 - R. Lortz , Y. Wang , U. Tutsch 2005
The superconductor YB6 has the second highest critical temperature Tc among the boride family MBn. We report measurements of the specific heat, resistivity, magnetic susceptibility and thermal expansion from 2 to 300 K, using a single crystal with Tc = 7.2 K. The superconducting gap is characteristic of medium-strong coupling. The specific heat, resistivity and expansivity curves are deconvolved to yield approximations of the phonon density of states, the spectral electron-phonon scattering function and the phonon density of states weighted by the frequency-dependent Grueneisen parameter respectively. Lattice vibrations extend to high frequencies >100 meV, but a dominant Einstein-like mode at ~8 meV, associated with the vibrations of yttrium ions in oversized boron cages, appears to provide most of the superconducting coupling and gives rise to an unusual temperature behavior of several observable quantities. A surface critical field Hc3 is also observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا