ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent Optically Induced Magnetism in Oxygen-Deficient Strontium Titanate

110   0   0.0 ( 0 )
 نشر من قبل Scott A. Crooker
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic and optical properties have been studied for decades, SrTiO$_3$ has recently become a renewed materials research focus catalyzed in part by the discovery of magnetism and superconductivity at interfaces between SrTiO$_3$ and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role in these effects. Moreover, recent signatures of magnetization in gated SrTiO$_3$ have further galvanized interest in the emergent properties of this nominally nonmagnetic material. Here we observe an optically induced and persistent magnetization in oxygen-deficient SrTiO$_{3-delta}$ using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18K, persists for hours below 10K, and is tunable via the polarization and wavelength of sub-bandgap (400-500nm) light. These effects occur only in oxygen-deficient samples, revealing the detailed interplay between magnetism, lattice defects, and light in an archetypal oxide material.

قيم البحث

اقرأ أيضاً

We discuss, based on first principles calculations, the possibility to tune the magnetism of oxygen vacancies at the (001) surface of strontium titanate $(mathrm{SrTiO_3}!)$. The magnetic moment of single and clustered vacancies stemming from Ti-O br oken bonds can be both quenched and stabilized controllably by chemical potential adjustment associated with doping the system with electrons or holes. We discuss to what extent this route to magnetization state control is robust against other external influences like chemical doping, mechanical action and electric field. Such control of vacancy state and magnetization can conceivably be achieved experimentally by using local probe tips.
We investigate the effects of strain on superconductivity with particular reference to SrTiO$_3$. Assuming that a ferroelectric mode that softens under tensile strain is responsible for the coupling, an increase in the critical temperature and range of carrier densities for superconductivity is predicted, while the peak of the superconducting dome shifts towards lower carrier densities. Using a Ginzburg-Landau approach in 2D, we find a linear dependence of the critical temperature on strain: if the couplings between the order parameter and strains in different directions differ while their sum is fixed, different behaviours under uniaxial and biaxial (uniform) strain can be understood.
We demonstrate theoretically that an off-resonant circularly polarized electromagnetic field can induce a persistent current in carbon nanotubes, which corresponds to electron rotation about the nanotube axis. As a consequence, the nanotubes acquire magnetic moment along the axis, which depends on their crystal structure and can be detected in state-of-the-art measurements. This effect and related phenomena are analyzed within the developed Floquet theory describing the electronic properties of the nanotubes irradiated by the field.
Cooling oxygen-deficient strontium titanate to liquid-helium temperature leads to a decrease in its electrical resistivity by several orders of magnitude. The temperature dependence of resistivity follows a rough T$^{3}$ behavior before becoming T$^{ 2}$ in the low-temperature limit, as expected in a Fermi liquid. Here, we show that the roughly cubic resistivity above 100K corresponds to a regime where the quasi-particle mean-free-path is shorter than the electron wave-length and the interatomic distance. These criteria define the Mott-Ioffe-Regel limit. Exceeding this limit is the hallmark of strange metallicity, which occurs in strontium titanate well below room temperature, in contrast to other perovskytes. We argue that the T$^{3}$-resistivity cannot be accounted for by electron-phonon scattering `{a} la Bloch-Gruneisen and consider an alternative scheme based on Landauer transmission between individual dopants hosting large polarons. We find a scaling relationship between the carrier mobility, the electric permittivity and the frequency of transverse optical soft mode in this temperature range. Providing an account of this observation emerges as a challenge to theory.
The temperature dependent Hall mobility data from La-doped SrTiO3 thin films has been analyzed and modeled considering various electron scattering mechanisms. We find that a ~6 meV transverse optical phonon (TO) deformation potential scattering mecha nism is necessary to explain the dependence of transport on temperature between 10-200 K. Also, we find that the low temperature electron mobility in intrinsic (nominally undoped) SrTiO3 is limited by acoustic phonon scattering. Adding the above two scattering mechanisms to longitudinal optical phonon (LO) and ionized impurity scattering mechanisms, excellent quantitative agreement between mobility measurement and model is achieved in the whole temperature range (2-300K) and carrier concentrations ranging over a few orders of magnitude (8x1017 cm-3 - 2x1020 cm-3).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا