ﻻ يوجد ملخص باللغة العربية
We consider the numerical approximation of the Landau-Lifshitz-Gilbert equation, which describes the dynamics of the magnetization in ferromagnetic materials. In addition to the classical micromagnetic contributions, the energy comprises the Dzyaloshinskii-Moriya interaction, which is the most important ingredient for the enucleation and the stabilization of chiral magnetic skyrmions. We propose and analyze three tangent plane integrators, for which we prove (unconditional) convergence of the finite element solutions towards a weak solution of the problem. The analysis is constructive and also establishes existence of weak solutions. Numerical experiments demonstrate the applicability of the methods for the simulation of practically relevant problem sizes.
In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multis
We introduce conservative integrators for long term integration of piecewise smooth systems with transversal dynamics and piecewise smooth conserved quantities. In essence, for a piecewise dynamical system with piecewise defined conserved quantities
We study the dynamics of skyrmions in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. An important link between topology and dynamics is established through the construction of unambiguous conservation laws obtained earlier in connection w
This article presents and analyses an exponential integrator for the stochastic Manakov equation, a system arising in the study of pulse propagation in randomly birefringent optical fibers. We first prove that the strong order of the numerical approx
The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex non-collinear spin orders through interactions of relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. S