ﻻ يوجد ملخص باللغة العربية
The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex non-collinear spin orders through interactions of relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram, composed of helical spiral, conical spiral and skyrmion crystal phases. Here, we report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements we observe a new multi-domain state in Cu2OSeO3. Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify physical origin of the new state and discuss its multiferroic properties.
We present long-wavelength neutron diffraction data measured on both single crystal and polycrystalline samples of the skyrmion host material Cu$_{2}$OSeO$_{3}$. We observe magnetic satellites around the $(0bar{1}1)$ diffraction peak not accessible t
In the cubic chiral magnet Cu2OSeO3 a low-temperature skyrmion state (LTS) and a concomitant tilted conical state are observed for magnetic fields parallel to <100>. In this work, we report on the dynamic resonances of these novel magnetic states. Af
Small angle neutron scattering experiments were performed on a bulk single crystal of chiral-lattice multiferroic insulator Cu$_2$OSeO$_3$. In the absence of an external magnetic field, helical spin order with magnetic modulation vector $q parallel <
Magnetic materials can host skyrmions, which are topologically non-trivial spin textures. In chiral magnets with cubic lattice symmetry, all previously-observed skyrmion phases require thermal fluctuations to become thermodynamically stable in bulk m
Polar lacunar spinels, such as GaV$_4$S$_8$ and GaV$_4$Se$_8$, were proposed to host skyrmion phases under magnetic field. In this work, we put forward, as a candidate for Neel-type skyrmion lattice, the isostructural GaMo$_4$S$_8$, here systematical