ﻻ يوجد ملخص باللغة العربية
During phase transitions certain properties of a material change, such as composition field and lattice-symmetry distortions. These changes are typically coupled, and affect the microstructures that form in materials. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model describing the composition field of a material system, with a phase field crystal (PFC) model describing its underlying microscopic configurations. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method, to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square lattice symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse composition phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
Amplitude representations of a binary phase field crystal model are developed for a two dimensional triangular lattice and three dimensional BCC and FCC crystal structures. The relationship between these amplitude equations and the standard phase fie
In this paper a generalization of the Cahn-Hilliard theory of binary liquids is presented for multi-component incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion type dynamics is derived on the basis of the Lagr
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perf
The phase-field crystal model in its amplitude equation approximation is shown to provide an accurate description of the deformation field in defected crystalline structures, as well as of dislocation motion. We analyze in detail the elastic distorti