ﻻ يوجد ملخص باللغة العربية
In this paper a generalization of the Cahn-Hilliard theory of binary liquids is presented for multi-component incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion type dynamics is derived on the basis of the Lagrange multiplier formalism. Next, a generalization of the binary Cahn-Hilliard free energy functional is presented for arbitrary number of components, offering the utilization of independent pairwise equilibrium interfacial properties. We show that the equilibrium two-component interfaces minimize the functional, and demonstrate, that the energy penalization for multi-component states increases strictly monotonously as a function of the number of components being present. We validate the model via equilibrium contact angle calculations in ternary and quaternary (4-component) systems. Simulations addressing liquid flow assisted spinodal decomposition in these systems are also presented.
During phase transitions certain properties of a material change, such as composition field and lattice-symmetry distortions. These changes are typically coupled, and affect the microstructures that form in materials. Here, we propose a 2D theoretica
Pair interactions between active particles need not follow Newtons third law. In this work we propose a continuum model of pattern formation due to non-reciprocal interaction between multiple species of scalar active matter. The classical Cahn-Hillia
The Cahn--Hilliard equation is a classic model of phase separation in binary mixtures that exhibits spontaneous coarsening of the phases. We study the Cahn--Hilliard equation with an imposed advection term in order to model the stirring and eventual
We extend the early time ordering theory of Cahn, Hilliard, and Cook (CHC) so that our generalized theory applies to solid-to-solid transitions. Our theory involves spatial symmetry breaking (the initial phase contains a symmetry not present in the
The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$,