ترغب بنشر مسار تعليمي؟ اضغط هنا

A coarse-grained phase-field crystal model of plastic motion

209   0   0.0 ( 0 )
 نشر من قبل Marco Salvalaglio
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase-field crystal model in its amplitude equation approximation is shown to provide an accurate description of the deformation field in defected crystalline structures, as well as of dislocation motion. We analyze in detail the elastic distortion and stress regularization at a dislocation core and show how the Burgers vector density can be directly computed from the topological singularities of the phase-field amplitudes. Distortions arising from these amplitudes are then supplemented with non-singular displacements to enforce mechanical equilibrium. This allows for the consistent separation of plastic and elastic time scales in this framework. A finite element method is introduced to solve the combined amplitude and elasticity equations, which is applied to a few prototypical configurations in two spatial dimensions for a crystal of triangular lattice symmetry: i) the stress field induced by an edge dislocation with an analysis of how the amplitude equation regularizes stresses near the dislocation core, ii) the motion of a dislocation dipole as a result of its internal interaction, and iii) the shrinkage of a rotated grain. We also compare our results with those given by other extensions of classical elasticity theory, such as strain-gradient elasticity and methods based on the smoothing of Burgers vector densities near defect cores.

قيم البحث

اقرأ أيضاً

We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method cal culations. This approach allows for the description of microscopic features, such as dislocations, while simultaneously being able to describe length scales that are orders of magnitude larger than the lattice spacing. Moreover, it allows for the direct description of extended defects by means of a scalar order parameter. The versatility of this framework is shown by considering both fcc and bcc lattice symmetries and different rotation axes. First, the specific case of planar, twist grain boundaries is illustrated. The details of the method are reported and the consistency of the results with literature is discussed. Then, the dislocation networks forming at the interface between a spherical, rotated crystal embedded in an unrotated crystalline structure, are shown. Although explicitly accounting for dislocations which lead to an anisotropic shrinkage of the rotated grain, the extension of the spherical grain boundary is found to decrease linearly over time in agreement with the classical theory of grain growth and recent atomistic investigations. It is shown that the results obtained for a system with bcc symmetry agree very well with existing results, validating the methodology. Furthermore, fully original results are shown for fcc lattice symmetry, revealing the generality of the reported observations.
Simple coarse-grained models, such as the Gaussian Network Model, have been shown to capture some of the features of equilibrium protein dynamics. We extend this model by using atomic contacts to define residue interactions and introducing more than one interaction parameter between residues. We use B-factors from 98 ultra-high resolution X-ray crystal structures to optimize the interaction parameters. The average correlation between GNM fluctuation predictions and the B-factors is 0.64 for the data set, consistent with a previous large-scale study. By separating residue interactions into covalent and noncovalent, we achieve an average correlation of 0.74, and addition of ligands and cofactors further improves the correlation to 0.75. However, further separating the noncovalent interactions into nonpolar, polar, and mixed yields no significant improvement. The addition of simple chemical information results in better prediction quality without increasing the size of the coarse-grained model.
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density $1/f^2$ at high frequencies $f$. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternate at irregular times with high population of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perf ectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.
Amplitude representations of a binary phase field crystal model are developed for a two dimensional triangular lattice and three dimensional BCC and FCC crystal structures. The relationship between these amplitude equations and the standard phase fie ld models for binary alloy solidification with elasticity are derived, providing an explicit connection between phase field crystal and phase field models. Sample simulations of solute migration at grain boundaries, eutectic solidification and quantum dot formation on nano-membranes are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا