ﻻ يوجد ملخص باللغة العربية
We study the collider phenomenology of a neutral gauge boson $Z$ arising in minimal but anomalous $mathrm{U}(1)$ extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of $mathrm{U}(1)$ extensions in terms of the new $mathrm{U}(1)$ charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop $Z$ decays to $ZZ$ and $Z$-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.
Inspired by recent studies of high-scale decay constant or flavorful QCD axions, we review and clarify their existence in effective string models with anomalous $U(1)$ gauge groups. We find that such models, when coupled to charged scalars getting va
In this paper we investigate a natural extension of the Standard Model that involves varying coupling constants. This is a general expectation in any fundamental theory such as string theory, and there are good reasons for why new physics could appea
We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs
So far the most sophisticated experiments have shown no trace of new physics at the TeV scale. Consequently, new models with unexplored parameter regions are necessary to explain current results, re-examine the existing data, and propose new experime
An overview is given of recent progress on a variety of fronts in the global QCD analysis of the parton structure of the nucleon and its implication for collider phenomenology, carried out by various subgroups of the CTEQ collaboration.