An overview is given of recent progress on a variety of fronts in the global QCD analysis of the parton structure of the nucleon and its implication for collider phenomenology, carried out by various subgroups of the CTEQ collaboration.
The latest CTEQ6.6 parton distributions, obtained by global analysis of hard scattering data in the framework of general-mass perturbative QCD, are employed to study theoretical predictions and their uncertainties for significant processes at the Fer
milab Tevatron and CERN Large Hadron Collider. The previously observed increase in predicted cross sections for the standard-candle W and Z boson production processes in the general-mass scheme (compared to those in the zero-mass scheme) is further investigated and quantified. A novel method to constrain PDF uncertainties in LHC observables, by effectively exploiting PDF-induced correlations with benchmark standard model cross sections, is presented. Using this method, we show that the top-antitop pair cross section can potentially serve as a standard candle observable for the LHC processes dominated by initial-state gluon scattering. Among other benefits, precise measurements of $tbar{t}$ cross sections would reduce PDF uncertainties in predictions for single-top quark and Higgs boson production in the standard model and minimal supersymmetric standard model.
The CTEQ program for the determination of parton distributions through a global QCD analysis of data for various hard scattering processes is fully described. A new set of distributions, CTEQ3, incorporating several new types of data is reported and
compared to the two previous sets of CTEQ distributions. Comparison with current data is discussed in some detail. The remaining uncertainties in the parton distributions and methods to further reduce them are assessed. Comparisons with the results of other global analyses are also presented.
We overview progress in the development of general-purpose CTEQ PDFs. The preprint is based on four talks presented by H.-L. Lai and P. Nadolsky at the 17th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2009).
We present the new CTEQ-TEA global analysis of quantum chromodynamics (QCD). In this analysis, parton distribution functions (PDFs) of the nucleon are determined within the Hessian method at the next-to-next-to-leading order (NNLO) in perturbative QC
D, based on the most recent measurements from the Large Hadron Collider (LHC) and a variety of world collider data. Because of difficulties in fitting both the ATLAS 7 and 8 TeV $W$ and $Z$ vector boson production cross section data, we present four families of (N)NLO CTEQ-TEA PDFs, named CT18, A, X and Z PDFs, respectively. We study the impact of the CT18 family of PDFs on the theoretical predictions of standard candle cross sections at the LHC.
The role of global QCD analysis of parton distribution functions (PDFs) in collider physics at the Tevatron and LHC is surveyed. Current status of PDF analyses are reviewed, emphasizing the uncertainties and the open issues. The stability of NLO QCD
global analysis and its prediction on standard candle W/Z cross sections at hadron colliders are investigated. The importance of the precise measurement of various W/Z cross sections at the Tevatron in advancing our knowledge of PDFs, hence in enhancing the capabilities of making significant progress in W mass and top quark parameter measurements, as well as the discovery potentials of Higgs and New Physics at the Tevatron and LHC, is emphasized.