ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous U(1) symmetry and lepton flavor violation

79   0   0.0 ( 0 )
 نشر من قبل K. S. Babu
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs through the renormalization group evolution of the soft SUSY breaking parameters between the string scale and the U(1)_A breaking scale. We derive general expressions for the evolution of these parameters in the presence of higher dimensional operators. Several sources for the flavor violation are identified: flavor-dependent contributions to the soft masses from the U(1)_A gaugino, scalar mass corrections proportional to the trace of U(1)_A charge, non-proportional A-terms from vertex corrections, and the U(1)_A D-term. Quantitative estimates for the decays mu -> e gamma and tau -> mu gamma are presented in supergravity models which accommodate the relic abundance of neutralino dark matter.


قيم البحث

اقرأ أيضاً

We study the contributions of supersymmetric models with a $U(1)$ horizontal symmetry and only spontaneous CP breaking to various lepton flavor observables, such as $mu to egamma$ and the electron electric dipole moment. We show that both a horizonta l symmetry and a lack of explicit CP violation can alleviate the existing bounds from such observables. The undetermined $mathcal{O}(1)$ coefficients in such mass matrix models muddle the interpretation of the bounds from various flavor observables. To overcome this, we define a new fine-tuning measure for different observables in such setups. This allows us to study how naturally the observed IR flavor observables can emerge from a given mass matrix model. We use our flavor-naturalness measure in study of our supersymmetric models and quantify the degree of fine tuning required by the bounds from various lepton flavor observables at each mass scale of sleptons, neutralinos, and charginos.
We show that new physics models without new flavor violating interactions can explain the recent anomalies in the $bto sell^+ell^-$ transitions. The $bto sell^+ell^-$ arises from a $Z$ penguin which automatically predicts the $V-A$ structure for the quark currents in the effective operators. This framework can be realized either in a renormalizable $U(1)$ setup or be due to new strongly interacting dynamics. The di-muon resonance searches at the LHC are becoming sensitive to this scenario since the $Z$ is relatively light, and could well be discovered in future searches by ATLAS and CMS.
We propose a radiative lepton model, in which the charged lepton masses are generated at one-loop level, and the neutrino masses are induced at two-loop level. On the other hand, tau mass is derived at tree level since it is too heavy to generate rad iatively. Then we discuss muon anomalous magnetic moment together with the constraint of lepton flavor violation. A large muon magnetic moment is derived due to the vector like charged fermions which are newly added to the standard model. In addition, considering a scalar dark matter in our model, a strong gamma-ray signal is produced by dark matter annihilation via internal bremsstrahlung. We can also obtain the effective neutrino number by the dark radiation of the Goldstone boson coming from the imposed global $U(1)$ symmetry.
85 - Ernest Ma 2021
Instead of right-handed neutrino singlets, the standard model is extended to include lepton triplets $(Sigma^+, Sigma^0, Sigma^-)$. Each quark and lepton family may now transform under an anomaly-free $U(1)_X$ gauge symmetry, known already for many y ears. A new sequential application is presented, using just the one Higgs doublet of the standard model, together with two $U(1)_X$ Higgs singlets. The resulting structure has hierarchical quark and lepton masses, as well as a viable seesaw neutrino mass matrix.
We study a simple extension of the Zee model, in which a discrete $Z_2$ symmetry imposed in the original model is replaced by a global $U(1)$ symmetry retaining the same particle content. Due to the $U(1)$ symmetry with flavor dependent charge assign ments, the lepton sector has an additional source of flavor violating Yukawa interactions with a controllable structure, while the quark sector does not at tree level. We show that current neutrino oscillation data can be explained under constraints from lepton flavor violating decays of charged leptons in a successful charge assignment of the $U(1)$ symmetry. In such scenario, we find a characteristic pattern of lepton flavor violating decays of additional Higgs bosons, which can be a smoking gun signature at collider experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا