ﻻ يوجد ملخص باللغة العربية
The organic spinterface describes the spin-polarized properties that develop, due to charge transfer, at the interface between a ferromagnetic metal (FM) and the molecules of an organic semiconductor. Yet, if the latter is also magnetic (e.g. molecular spin chains), the interfacial magnetic coupling can generate complexity within magnetotransport experiments. Also, assembling this interface may degrade the properties of its constituents (e.g. spin crossover or non-sublimable molecules). To circumvent these issues, one can separate the molecular and FM films using a less reactive nonmagnetic metal (NM). Spin-resolved photoemission spectroscopy measurements on the prototypical system Co(001)//Cu/Mnphthalocyanine (MnPc) reveal that the Cu/MnPc spinterface atop ferromagnetic Co is highly spin-polarized at room temperature, up to Cu spacer thicknesses of at least 10 monolayers. Ab-initio theory describes a spin polarization of the topmost Cu layer after molecular hybridization that can be accompanied by magnetic hardening effects. This spinterfaces unexpected robustness paves the way for 1) integrating electronically fragile molecules within organic spinterfaces, and 2) manipulating molecular spin chains using the well-documented spin transfer torque properties of the FM/NM bilayer.
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However
The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of o
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneoulsy, the two atomic sites in the unit cell of these crystals form inversion partners which gives
We inject spin-polarized electrons from an Fe/MgO tunnel barrier contact into n-type Ge(001) substrates with electron densities 2e16 < n < 8e17 cm-3, and electrically detect the resulting spin accumulation using three-terminal Hanle measurements. We
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the