ترغب بنشر مسار تعليمي؟ اضغط هنا

Cu metal / Mn phthalocyanine organic spinterfaces atop Co with high spin polarization at room temperature

153   0   0.0 ( 0 )
 نشر من قبل Martin Bowen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The organic spinterface describes the spin-polarized properties that develop, due to charge transfer, at the interface between a ferromagnetic metal (FM) and the molecules of an organic semiconductor. Yet, if the latter is also magnetic (e.g. molecular spin chains), the interfacial magnetic coupling can generate complexity within magnetotransport experiments. Also, assembling this interface may degrade the properties of its constituents (e.g. spin crossover or non-sublimable molecules). To circumvent these issues, one can separate the molecular and FM films using a less reactive nonmagnetic metal (NM). Spin-resolved photoemission spectroscopy measurements on the prototypical system Co(001)//Cu/Mnphthalocyanine (MnPc) reveal that the Cu/MnPc spinterface atop ferromagnetic Co is highly spin-polarized at room temperature, up to Cu spacer thicknesses of at least 10 monolayers. Ab-initio theory describes a spin polarization of the topmost Cu layer after molecular hybridization that can be accompanied by magnetic hardening effects. This spinterfaces unexpected robustness paves the way for 1) integrating electronically fragile molecules within organic spinterfaces, and 2) manipulating molecular spin chains using the well-documented spin transfer torque properties of the FM/NM bilayer.

قيم البحث

اقرأ أيضاً

67 - Tomoyuki Sasaki 2014
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However , RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in non-degenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observed the modulation of the Hanle-type spin precession signals, which is a characteristic spin dynamics in non-degenerate semiconductor. We obtained long spin transport of more than 20 {mu}m and spin rotation, greater than 4{pi} at RT. We also observed gate-induced modulation of spin transport signals at RT. The modulation of spin diffusion length as a function of a gate voltage was successfully observed, which we attributed to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to make avenues to create of practical Si-based spin MOSFETs.
175 - Yuan Xu , Xi Mi , Y. Z. Wu 2007
The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of o ur theoretical results with experiment is good in a large energy scale from Fermi level to energy above vacuum level. It is found that interfacial distortion is crucial for understanding the spin dependence of the phase gain at the Cu$|$Co interface. Near the Fermi level, image state plays an important role to the phase accumulation in the copper film.
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneoulsy, the two atomic sites in the unit cell of these crystals form inversion partners which gives rise to relativistic non-equilibrium spin phenomena highly relevant for magnetic memories and other spintronic devices. When the inversion-partner sites are occupied by the same atomic species, electrical current can generate local spin polarization with the same magnitude and opposite sign on the two inversion-partner sites. In CuMnAs, which shares this specific crystal symmetry of the Si lattice, the effect led to the demonstration of electrical switching in an antiferromagnetic memory at room temperature. When the inversion-partner sites are occupied by different atoms, a non-zero global spin-polarization is generated by the applied current which can switch a ferromagnet, as reported at low temperatures in the diluted magnetic semiconductor (Ga,Mn)As. Here we demonstrate the effect of the global current-induced spin polarization in a counterpart crystal-symmetry material NiMnSb which is a member of the broad family of magnetic Heusler compounds. It is an ordered high-temperature ferromagnetic metal whose other favorable characteristics include high spin-polarization and low damping of magnetization dynamics. Our experiments are performed on strained single-crystal epilayers of NiMnSb grown on InGaAs. By performing all-electrical ferromagnetic resonance measurements in microbars patterned along different crystal axes we detect room-temperature spin-orbit torques generated by effective fields of the Dresselhaus symmetry. The measured magnitude and symmetry of the current-induced torques are consistent with our relativistic density-functional theory calculations.
We inject spin-polarized electrons from an Fe/MgO tunnel barrier contact into n-type Ge(001) substrates with electron densities 2e16 < n < 8e17 cm-3, and electrically detect the resulting spin accumulation using three-terminal Hanle measurements. We observe significant spin accumulation in the Ge up to room temperature. We observe precessional dephasing of the spin accumulation (the Hanle effect) in an applied magnetic field for both forward and reverse bias (spin extraction and injection), and determine spin lifetimes and corresponding diffusion lengths for temperatures of 225 K to 300 K. The room temperature spin lifetime increases from {tau}s = 50 ps to 123 ps with decreasing electron concentration, as expected from electron spin resonance work on bulk Ge. The measured spin resistance-area product is in good agreement with values predicted by theory for samples with carrier densities below the metal-insulator transition (MIT), but 100x larger for samples above the MIT. These data demonstrate that the spin accumulation measured occurs in the Ge, although dopant-derived interface or band states may enhance the measured spin voltage above the MIT. We estimate the polarization in the Ge to be on the order of 1%.
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the 2DEG layer is reported. However, the direct effect of charge-to-spin conversion, an essential ingredient for spintronic devices in a current induced spin-orbit torque scheme, has not been demonstrated yet. Here we show, for the first time, a highly efficient spin generation with the efficiency of ~6.3 in the STO/LAO/CoFeB structure at room temperature by using spin torque ferromagnetic resonance. In addition, we suggest that the spin transmission through the LAO layer at high temperature range is attributed to the inelastic tunneling via localized states in the LAO band gap. Our findings may lead to potential applications in the oxide insulator based spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا