ﻻ يوجد ملخص باللغة العربية
We inject spin-polarized electrons from an Fe/MgO tunnel barrier contact into n-type Ge(001) substrates with electron densities 2e16 < n < 8e17 cm-3, and electrically detect the resulting spin accumulation using three-terminal Hanle measurements. We observe significant spin accumulation in the Ge up to room temperature. We observe precessional dephasing of the spin accumulation (the Hanle effect) in an applied magnetic field for both forward and reverse bias (spin extraction and injection), and determine spin lifetimes and corresponding diffusion lengths for temperatures of 225 K to 300 K. The room temperature spin lifetime increases from {tau}s = 50 ps to 123 ps with decreasing electron concentration, as expected from electron spin resonance work on bulk Ge. The measured spin resistance-area product is in good agreement with values predicted by theory for samples with carrier densities below the metal-insulator transition (MIT), but 100x larger for samples above the MIT. These data demonstrate that the spin accumulation measured occurs in the Ge, although dopant-derived interface or band states may enhance the measured spin voltage above the MIT. We estimate the polarization in the Ge to be on the order of 1%.
Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a source and a we
Using a metal-oxide-semiconductor field effect transistor (MOSFET) structure with a high-quality CoFe/n^+Si contact, we systematically study spin injection and spin accumulation in a nondegenerated Si channel with a doping density of ~ 4.5*10^15cm^-3
In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions
We demonsrtate electrical spin injection and detection in $n$-type Ge ($n$-Ge) at room temperature using four-terminal nonlocal spin-valve and Hanle-effect measurements in lateral spin-valve (LSV) devices with Heusler-alloy Schottky tunnel contacts.
We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed