ﻻ يوجد ملخص باللغة العربية
We apply analytic bootstrap techniques to the four-point correlator of fundamental fields in the Wilson-Fisher model. In an $epsilon$-expansion crossing symmetry fixes the double discontinuity of the correlator in terms of CFT data at lower orders. Large spin perturbation theory, or equivalently the recently proposed Froissart-Gribov inversion integral, then allows one to reconstruct the CFT data of intermediate operators of any spin. We use this method to compute the anomalous dimensions and OPE coefficients of leading twist operators. To cubic order in $epsilon$ the double discontinuity arises solely from the identity operator and the scalar bilinear operator, making the computation straightforward. At higher orders the double discontinuity receives contributions from infinite towers of higher spin operators. At fourth order, the structure of perturbation theory leads to a proposal in terms of functions of certain degree of transcendentality, which can then be fixed by symmetries. This leads to the full determination of the CFT data for leading twist operators to fourth order.
We study the scaling dimension $Delta_{phi^n}$ of the operator $phi^n$ where $phi$ is the fundamental complex field of the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$. Even for a perturbatively small fixed point coupling $lambda
We present a general formalism that allows for the computation of large-order renormalized expansions in the spacetime representation, effectively doubling the numerically attainable perturbation order of renormalized Feynman diagrams. We show that t
We consider conformal field theories around points of large twist degeneracy. Examples of this are theories with weakly broken higher spin symmetry and perturbations around generalised free fields. At the degenerate point we introduce twist conformal
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes
For certain dimensionally-regulated one-, two- and three-loop diagrams, problems of constructing the epsilon-expansion and the analytic continuation of the results are studied. In some examples, an arbitrary term of the epsilon-expansion can be calcu