ﻻ يوجد ملخص باللغة العربية
We present a general formalism that allows for the computation of large-order renormalized expansions in the spacetime representation, effectively doubling the numerically attainable perturbation order of renormalized Feynman diagrams. We show that this formulation compares advantageously to the currently standard techniques due to its high efficiency, simplicity, and broad range of applicability. Our formalism permits to easily complement perturbation theory with non-perturbative information, which we illustrate by implementing expansions renormalized by the addition of a gap or the inclusion of Dynamical Mean-Field Theory. As a result, we present numerically-exact results for the square-lattice Fermi-Hubbard model in the low temperature non-Fermi-liquid regime and show the momentum-dependent suppression of fermionic excitations in the antinodal region.
We apply analytic bootstrap techniques to the four-point correlator of fundamental fields in the Wilson-Fisher model. In an $epsilon$-expansion crossing symmetry fixes the double discontinuity of the correlator in terms of CFT data at lower orders. L
We classify subsystem symmetry-protected topological (SSPT) phases in $3+1$D protected by planar subsystem symmetries, which are dual to abelian fracton topological orders. We distinguish between weak SSPTs, which can be constructed by stacking $2+1$
Continuing the program begun by the authors in a previous paper, we develop an exact low-density expansion for the random minimum spanning tree (MST) on a finite graph, and use it to develop a continuum perturbation expansion for the MST on critical
We introduce a perturbation expansion for athermal systems that allows an exact determination of displacement fields away from the crystalline state as a response to disorder. We show that the displacement fields in energy minimized configurations of
One-dimensional gapped systems are often characterized by a hidden non-local order parameter, the so-called string order. Due to the gap, thermodynamic properties are robust against a weak higher-dimensional coupling between such chains or ladders. T