ﻻ يوجد ملخص باللغة العربية
We study the scaling dimension $Delta_{phi^n}$ of the operator $phi^n$ where $phi$ is the fundamental complex field of the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$. Even for a perturbatively small fixed point coupling $lambda_*$, standard perturbation theory breaks down for sufficiently large $lambda_*n$. Treating $lambda_* n$ as fixed for small $lambda_*$ we show that $Delta_{phi^n}$ can be successfully computed through a semiclassical expansion around a non-trivial trajectory, resulting in $$ Delta_{phi^n}=frac{1}{lambda_*}Delta_{-1}(lambda_* n)+Delta_{0}(lambda_* n)+lambda_* Delta_{1}(lambda_* n)+ldots $$ We explicitly compute the first two orders in the expansion, $Delta_{-1}(lambda_* n)$ and $Delta_{0}(lambda_* n)$. The result, when expanded at small $lambda_* n$, perfectly agrees with all available diagrammatic computations. The asymptotic at large $lambda_* n$ reproduces instead the systematic large charge expansion, recently derived in CFT. Comparison with Monte Carlo simulations in $d=3$ is compatible with the obvious limitations of taking $varepsilon=1$, but encouraging.
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes
We show that the correlator of three large charge operators with minimal scaling dimension can be computed semiclassically in CFTs with a $U(1)$ symmetry for arbitrary fixed values of the ratios of their charges. We obtain explicitly the OPE coeffici
We apply analytic bootstrap techniques to the four-point correlator of fundamental fields in the Wilson-Fisher model. In an $epsilon$-expansion crossing symmetry fixes the double discontinuity of the correlator in terms of CFT data at lower orders. L
In this letter, we discuss certain universal predictions of the large charge expansion in conformal field theories with $U(1)$ symmetry, mainly focusing on four-dimensional theories. We show that, while in three dimensions quantum fluctuations are re
In arXiv:1909.01269 it was shown that the scaling dimension of the lightest charge $n$ operator in the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$ can be computed semiclassically for arbitrary values of $lambda n$, where $lambda