ﻻ يوجد ملخص باللغة العربية
Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial waters libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm$^{-1}$, $approx 165$ cm$^{-1}$ higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of waters rotational potential, this increase suggests that one effect of terminating bulk waters hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.
The dielectric spectrum of liquid water, $10^{4} - 10^{11}$ Hz, is interpreted in terms of diffusion of charges, formed as a result of self-ionization of H$_{2}$O molecules. This approach explains the Debye relaxation and the dc conductivity as two m
Methanol occupies a central role in chemical synthesis and is considered an ideal candidate for cleaner fuel storage and transportation. It can be catalyzed from water and volatile organic compounds such as carbon dioxide, thereby offering an attract
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two-centuries of investigation, the mechanism underlying why hydronium diffuse
A comprehensive microscopic understanding of ambient liquid water is a major challenge for $ab$ $initio$ simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as
Recent reports on the production of hydrogen peroxide (H$_2$O$_2$) on the surface of condensed water microdroplets without the addition of catalysts or additives have sparked significant interest. The underlying mechanism is speculated to be ultrahig