ترغب بنشر مسار تعليمي؟ اضغط هنا

New or Improved Orbital Periods of Cataclysmic Binaries

252   0   0.0 ( 0 )
 نشر من قبل John R. Thorstensen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a table of 58 cataclysmic binary orbital periods determined using data from MDM Observatory. Most are heretofore unpublished; some are refinements of previously published periods.

قيم البحث

اقرأ أيضاً

We analyze 221 eclipsing binaries (EBs) in the Large Magellanic Cloud with B-type main-sequence (MS) primaries ($M_1$ $approx$ 4 - 14 M$_{odot}$) and orbital periods $P$ = 20 - 50 days that were photometrically monitored by the Optical Gravitational Lensing Experiment. We utilize our three-stage automated pipeline to (1) classify all 221 EBs, (2) fit physical models to the light curves of 130 detached well-defined EBs from which unique parameters can be determined, and (3) recover the intrinsic binary statistics by correcting for selection effects. We uncover two statistically significant trends with age. First, younger EBs tend to reside in dustier environments with larger photometric extinctions, an empirical relation that can be implemented when modeling stellar populations. Second, younger EBs generally have large eccentricities. This demonstrates that massive binaries at moderate orbital periods are born with a Maxwellian thermal orbital velocity distribution, which indicates they formed via dynamical interactions. In addition, the age-eccentricity anticorrelation provides a direct constraint for tidal evolution in highly eccentric binaries containing hot MS stars with radiative envelopes. The intrinsic fraction of B-type MS stars with stellar companions $q$ = $M_2$/$M_1$ $>$ 0.2 and orbital periods $P$ = 20 - 50 days is (7 $pm$ 2)%. We find early-type binaries at $P$ = 20 - 50 days are weighted significantly toward small mass ratios $q$ $approx$ 0.2 - 0.3, which is different than the results from previous observations of closer binaries with $P$ $<$ 20 days. This indicates that early-type binaries at slightly wider orbital separations have experienced substantially less coevolution and competitive accretion during their formation in the circumbinary disk.
I report new orbital periods (P) for 13 classical novae, based on light curves from TESS, AAVSO, and other public archives. These new nova periods now constitute nearly one-seventh of all known nova periods. Five of my systems have P>1 day, which dou bles the number of such systems that must have evolved companion stars. (This is simply because ground-based time series have neither the coverage nor the stability required to discover these small-amplitude long periods.) V1016 Sgr has a rare P below the period gap, and suddenly becomes useful for current debates on evolution of novae. Five of the novae (FM Cir, V399 Del, V407 Lup, YZ Ret, and V549 Vel) have the orbital modulations in the tail of the eruption after the transition phase. Soon after the transition, YZ Ret shows a unique set of aperiodic diminishing oscillations, plus YZ Ret shows two highly-significant transient periods, 1.1% and 4.5% longer than the orbital period, much like for the superhump phenomenon. I also report an optical 591.27465 second periodicity for V407 Lup, which is coherent and must be tied to the white dwarf spin period. The new orbital periods in days are 0.1883907 +- 0.0000048 for V1405 Cas, 3.4898 +- 0.0072 for FM Cir, 0.162941 +- 0.000060 for V339 Del, 3.513 +- 0.020 for V407 Lup, 1.32379 +- 0.00048 for V2109 Oph, 3.21997 +- 0.00039 for V392 Per, 0.1628714 +- 0.0000110 for V598 Pup, 0.1324539 +- 0.0000098 for YZ Ret, 0.07579635 +- 0.00000017 for V1016 Sgr, 7.101 +- 0.016 for V5583 Sgr, 0.61075 +- 0.00071 for V1534 Sco, 0.40319 +- 0.00005 for V549 Vel, and 0.146501 +- 0.000058 for NQ Vul.
In this work we derive the minimum allowed orbital periods of H-rich bodies ranging in mass from Saturns mass to 1 $M_{odot}$, emphasizing gas giants and brown dwarfs over the range $0.0003 - 0.074 , M_odot$. Analytic fitting formulae for $P_{rm min} $ as a function of the mass of the body and as a function of the mean density are presented. We assume that the density of the host star is sufficiently high so as not to limit the minimum period. In many instances this implies that the host star is a white dwarf. This work is aimed, in part, toward distinguishing brown dwarfs from planets that are found transiting the host white dwarf without recourse to near infrared or radial velocity measurements. In particular, orbital periods of $lesssim 100$ minutes are very likely to be brown dwarfs. The overall minimum period over this entire mass range is $simeq 37$ minutes.
We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster center than the main sequence turnoff stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of approx. 1.4 M_sun. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colors. For one of them we present very strong evidence for being an ablated companion. The other three could be CO- or He-WDs.
We present UBVRI photometry of three symbiotic stars ZZ CMi, TX CVn and AG Peg carried out from 1997 to 2008 in Piwnice Observatory near Torun. To search orbital periods of these stars Fourier analysis was used. For two of them, TX CVn and AG Peg, we have confirmed the earlier known periods. For ZZ CMi we found a relatively short period 218.59 days. Assuming, that the orbital period is twice longer (P=437.18 days), the double sine wave in the light curve can be interpreted by ellipsoidal effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا