ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimum Orbital Periods of H-Rich Bodies

91   0   0.0 ( 0 )
 نشر من قبل Lorne Nelson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we derive the minimum allowed orbital periods of H-rich bodies ranging in mass from Saturns mass to 1 $M_{odot}$, emphasizing gas giants and brown dwarfs over the range $0.0003 - 0.074 , M_odot$. Analytic fitting formulae for $P_{rm min}$ as a function of the mass of the body and as a function of the mean density are presented. We assume that the density of the host star is sufficiently high so as not to limit the minimum period. In many instances this implies that the host star is a white dwarf. This work is aimed, in part, toward distinguishing brown dwarfs from planets that are found transiting the host white dwarf without recourse to near infrared or radial velocity measurements. In particular, orbital periods of $lesssim 100$ minutes are very likely to be brown dwarfs. The overall minimum period over this entire mass range is $simeq 37$ minutes.

قيم البحث

اقرأ أيضاً

We deduce on hourly basis the spatial gradient of the cosmic ray density in three dimensions from the directional anisotropy of high-energy (~50 GeV) galactic cosmic ray (GCR) intensity observed with a global network of muon detectors on the Earths s urface. By analyzing the average features of the gradient in the corotational interaction regions (CIRs) recorded in successive two solar activity minimum periods, we find that the observed latitudinal gradient (Gz) changes its sign from negative to positive on the Earths heliospheric current sheet (HCS) crossing from the northern to the southern hemisphere in A<0 epoch, while it changes from positive to negative in A>0 epoch. This is in accordance with the drift prediction. We also find a negative enhancement in Gx after the HCS crossing in both A<0 and A>0 epochs, but not in Gy. This asymmetrical feature of Gx and Gy indicates significant contributions from the parallel and perpendicular diffusions to the the gradient in CIRs in addition to the contribution from the drift effect.
I report new orbital periods (P) for 13 classical novae, based on light curves from TESS, AAVSO, and other public archives. These new nova periods now constitute nearly one-seventh of all known nova periods. Five of my systems have P>1 day, which dou bles the number of such systems that must have evolved companion stars. (This is simply because ground-based time series have neither the coverage nor the stability required to discover these small-amplitude long periods.) V1016 Sgr has a rare P below the period gap, and suddenly becomes useful for current debates on evolution of novae. Five of the novae (FM Cir, V399 Del, V407 Lup, YZ Ret, and V549 Vel) have the orbital modulations in the tail of the eruption after the transition phase. Soon after the transition, YZ Ret shows a unique set of aperiodic diminishing oscillations, plus YZ Ret shows two highly-significant transient periods, 1.1% and 4.5% longer than the orbital period, much like for the superhump phenomenon. I also report an optical 591.27465 second periodicity for V407 Lup, which is coherent and must be tied to the white dwarf spin period. The new orbital periods in days are 0.1883907 +- 0.0000048 for V1405 Cas, 3.4898 +- 0.0072 for FM Cir, 0.162941 +- 0.000060 for V339 Del, 3.513 +- 0.020 for V407 Lup, 1.32379 +- 0.00048 for V2109 Oph, 3.21997 +- 0.00039 for V392 Per, 0.1628714 +- 0.0000110 for V598 Pup, 0.1324539 +- 0.0000098 for YZ Ret, 0.07579635 +- 0.00000017 for V1016 Sgr, 7.101 +- 0.016 for V5583 Sgr, 0.61075 +- 0.00071 for V1534 Sco, 0.40319 +- 0.00005 for V549 Vel, and 0.146501 +- 0.000058 for NQ Vul.
We present UBVRI photometry of three symbiotic stars ZZ CMi, TX CVn and AG Peg carried out from 1997 to 2008 in Piwnice Observatory near Torun. To search orbital periods of these stars Fourier analysis was used. For two of them, TX CVn and AG Peg, we have confirmed the earlier known periods. For ZZ CMi we found a relatively short period 218.59 days. Assuming, that the orbital period is twice longer (P=437.18 days), the double sine wave in the light curve can be interpreted by ellipsoidal effect.
We present a table of 58 cataclysmic binary orbital periods determined using data from MDM Observatory. Most are heretofore unpublished; some are refinements of previously published periods.
The impact of nova eruptions on the long-term evolution of Cataclysmic Variables(CVs) is one of the least understood and intensively discussed topics in the field. Acrucial ingredient to improve with this would be to establish a large sample of post- novae with known properties, starting with the most easily accessible one, the orbitalperiod. Here we report new orbital periods for six faint novae: X Cir (3.71 h), ILNor (1.62 h), DY Pup (3.35 h), V363 Sgr (3.03 h), V2572 Sgr (3.75 h) and CQ Vel(2.7 h). We furthermore revise the periods for the old novae OY Ara, RS Car, V365Car, V849 Oph, V728 Sco, WY Sge, XX Tau and RW UMi. Using these new dataand critically reviewing the trustworthiness of reported orbital periods of old novae inthe literature, we establish an updated period distribution. We employ a binary-starevolution code to calculate a theoretical period distribution using both an empiricaland the classical prescription for consequential angular momentum loss. In comparisonwith the observational data we find that both models especially fail to reproduce thepeak in the 3 - 4 h range, suggesting that the angular momentum loss for CVs abovethe period gap is not totally understood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا