ﻻ يوجد ملخص باللغة العربية
We propose dynamic scaling in temporal networks with heterogeneous activities and memory, and provide a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven network model [H. Kim textit{et al.}, Eur. Phys. J. B {bf 88}, 315 (2015)]. Particularly, we focus on the interplay of the time resolution and memory in dynamic topologies. Through the random walk (RW) process, we investigate diffusion properties and topological changes as the time resolution increases. Our results with memory are compared to those of the memoryless case. Based on the temporal percolation concept, we derive scaling exponents in the dynamics of the largest cluster and the coverage of the RW process in time-varying networks. We find that the time resolution in the time-accumulated network determines the effective size of the network, while memory affects relevant scaling properties at the crossover from the dynamic regime to the static one. The origin of memory-dependent scaling behaviors is the dynamics of the largest cluster, which depends on temporal degree distributions. Finally, we conjecture of the extended finite-size scaling ansatz for dynamic topologies and the fundamental property of temporal networks, which are numerically confirmed.
A heterogeneous continuous time random walk is an analytical formalism for studying and modeling diffusion processes in heterogeneous structures on microscopic and macroscopic scales. In this paper we study both analytically and numerically the effec
The interest in non-Markovian dynamics within the complex systems community has recently blossomed, due to a new wealth of time-resolved data pointing out the bursty dynamics of many natural and human interactions, manifested in an inter-event time b
In real networks, the dependency between nodes is ubiquitous; however, the dependency is not always complete and homogeneous. In this paper, we propose a percolation model with weak and heterogeneous dependency; i.e., dependency strengths could be di
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction
The recent high level of interest in weighted complex networks gives rise to a need to develop new measures and to generalize existing ones to take the weights of links into account. Here we focus on various generalizations of the clustering coeffici