ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalizations of the clustering coefficient to weighted complex networks

166   0   0.0 ( 0 )
 نشر من قبل Jari Saram\\\"aki
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent high level of interest in weighted complex networks gives rise to a need to develop new measures and to generalize existing ones to take the weights of links into account. Here we focus on various generalizations of the clustering coefficient, which is one of the central characteristics in the complex network theory. We present a comparative study of the several suggestions introduced in the literature, and point out their advantages and limitations. The concepts are illustrated by simple examples as well as by empirical data of the world trade and weighted coauthorship networks.



قيم البحث

اقرأ أيضاً

A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
Traffic fluctuation has so far been studied on unweighted networks. However many real traffic systems are better represented as weighted networks, where nodes and links are assigned a weight value representing their physical properties such as capaci ty and delay. Here we introduce a general random diffusion (GRD) model to investigate the traffic fluctuation in weighted networks, where a random walks choice of route is affected not only by the number of links a node has, but also by the weight of individual links. We obtain analytical solutions that characterise the relation between the average traffic and the fluctuation through nodes and links. Our analysis is supported by the results of numerical simulations. We observe that the value ranges of the average traffic and the fluctuation, through nodes or links, increase dramatically with the level of heterogeneity in link weight. This highlights the key role that link weight plays in traffic fluctuation and the necessity to study traffic fluctuation on weighted networks.
The asymptotic (non)equivalence of canonical and microcanonical ensembles, describing systems with soft and hard constraints respectively, is a central concept in statistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been associated with nonvanishing relative canonical fluctuations of the constraints in the thermodynamic limit. Recently, it has been reformulated in terms of a nonvanishing relative entropy density between microcanonical and canonical probabilities. The earliest observations of EE violation required phase transitions or long-range interactions. More recent research on binary networks found that an extensive number of local constraints can also break EE, even in absence of phase transitions. Here we study for the first time ensemble nonequivalence in weighted networks with local constraints. Unlike their binary counterparts, these networks can undergo a form of Bose-Einstein condensation (BEC) producing a core-periphery structure where a finite fraction of the link weights concentrates in the core. This phenomenon creates a unique setting where local constraints coexist with a phase transition. We find surviving relative fluctuations only in the condensed phase, as in more traditional BEC settings. However, we also find a non-vanishing relative entropy density for all temperatures, signalling a breakdown of EE due to the presence of an extensive number of constraints, irrespective of BEC. Therefore, in presence of extensively many local constraints, vanishing relative fluctuations no longer guarantee EE.
We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hy perbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the Internet into the hyperbolic plane, and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of Internet routing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا