ترغب بنشر مسار تعليمي؟ اضغط هنا

Random walks in non-Poissoinan activity driven temporal networks

137   0   0.0 ( 0 )
 نشر من قبل Romualdo Pastor-Satorras
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interest in non-Markovian dynamics within the complex systems community has recently blossomed, due to a new wealth of time-resolved data pointing out the bursty dynamics of many natural and human interactions, manifested in an inter-event time between consecutive interactions showing a heavy-tailed distribution. In particular, empirical data has shown that the bursty dynamics of temporal networks can have deep consequences on the behavior of the dynamical processes running on top of them. Here, we study the case of random walks, as a paradigm of diffusive processes, unfolding on temporal networks generated by a non-Poissonian activity driven dynamics. We derive analytic expressions for the steady state occupation probability and first passage time distribution in the infinite network size and strong aging limits, showing that the random walk dynamics on non-Markovian networks are fundamentally different from what is observed in Markovian networks. We found a particularly surprising behavior in the limit of diverging average inter-event time, in which the random walker feels the network as homogeneous, even though the activation probability of nodes is heterogeneously distributed. Our results are supported by extensive numerical simulations. We anticipate that our findings may be of interest among the researchers studying non-Markovian dynamics of time-evolving complex topologies.



قيم البحث

اقرأ أيضاً

Due to wide applications in diverse fields, random walks subject to stochastic resetting have attracted considerable attention in the last decade. In this paper, we study discrete-time random walks on complex network with multiple resetting nodes. Us ing a renewal approach, we derive exact expressions of the occupation probability of the walker in each node and mean-field first-passage time between arbitrary two nodes. All the results are relevant to the spectral properties of the transition matrix in the absence of resetting. We demonstrate our results on circular networks, stochastic block models, and Barabasi-Albert scale-free networks, and find the advantage of the resetting processes to multiple resetting nodes in global searching on such networks.
141 - Hyewon Kim , Meesoon Ha , 2017
We propose dynamic scaling in temporal networks with heterogeneous activities and memory, and provide a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven network model [H. Kim textit{et al.}, Eur. Phys. J. B {bf 88}, 315 (2015)]. Particularly, we focus on the interplay of the time resolution and memory in dynamic topologies. Through the random walk (RW) process, we investigate diffusion properties and topological changes as the time resolution increases. Our results with memory are compared to those of the memoryless case. Based on the temporal percolation concept, we derive scaling exponents in the dynamics of the largest cluster and the coverage of the RW process in time-varying networks. We find that the time resolution in the time-accumulated network determines the effective size of the network, while memory affects relevant scaling properties at the crossover from the dynamic regime to the static one. The origin of memory-dependent scaling behaviors is the dynamics of the largest cluster, which depends on temporal degree distributions. Finally, we conjecture of the extended finite-size scaling ansatz for dynamic topologies and the fundamental property of temporal networks, which are numerically confirmed.
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterised by these two features. We study how these properties affect random walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first passage time of the process and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems such heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H ere we present a simple chemical network in which the selection of states is driven by the thermodynamic necessity of dissipating heat as rapidly as possible in the presence of a thermal gradient: states participating to faster reactions contribute the most to the dissipation rate, and are the most populated ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as the complexity of the chemical network increases, the textit{velocity} of the reaction path leading to a given state determines its selection, giving rise to non-trivial localization phenomena in state space. A byproduct of our studies is that, in the presence of a temperature gradient, thermophoresis-like behavior inevitably appears depending on the transport properties of each individual state, thus hinting at a possible microscopic explanation of this intriguing yet still not fully understood phenomenon.
145 - Yuan Lin , Zhongzhi Zhang 2013
In this paper, we propose a general framework for the trapping problem on a weighted network with a perfect trap fixed at an arbitrary node. By utilizing the spectral graph theory, we provide an exact formula for mean first-passage time (MFPT) from o ne node to another, based on which we deduce an explicit expression for average trapping time (ATT) in terms of the eigenvalues and eigenvectors of the Laplacian matrix associated with the weighted graph, where ATT is the average of MFPTs to the trap over all source nodes. We then further derive a sharp lower bound for the ATT in terms of only the local information of the trap node, which can be obtained in some graphs. Moreover, we deduce the ATT when the trap is distributed uniformly in the whole network. Our results show that network weights play a significant role in the trapping process. To apply our framework, we use the obtained formulas to study random walks on two specific networks: trapping in weighted uncorrelated networks with a deep trap, the weights of which are characterized by a parameter, and Levy random walks in a connected binary network with a trap distributed uniformly, which can be looked on as random walks on a weighted network. For weighted uncorrelated networks we show that the ATT to any target node depends on the weight parameter, that is, the ATT to any node can change drastically by modifying the parameter, a phenomenon that is in contrast to that for trapping in binary networks. For Levy random walks in any connected network, by using their equivalence to random walks on a weighted complete network, we obtain the optimal exponent characterizing Levy random walks, which have the minimal average of ATTs taken over all target nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا