ﻻ يوجد ملخص باللغة العربية
Open questions with respect to the computational complexity of linear CNF formulas in connection with regularity and uniformity are addressed. In particular it is proven that any l-regular monotone CNF formula is XSAT-unsatisfiable if its number of clauses m is not a multiple of l. For exact linear formulas one finds surprisingly that l-regularity implies k-uniformity, with m = 1 + k(l-1)) and allowed k-values obey k(k-1) = 0 (mod l). Then the computational complexity of the class of monotone exact linear and l-regular CNF formulas with respect to XSAT can be determined: XSAT-satisfiability is either trivial, if m is not a multiple of l, or it can be decided in sub-exponential time, namely O(exp(n^^1/2)). Sub-exponential time behaviour for the wider class of regular and uniform linear CNF formulas can be shown for certain subclasses.
The study of regular linear conjunctive normal form (LCNF) formulas is of interest because exact satisfiability (XSAT) is known to be NP-complete for this class of formulas. In a recent paper it was shown that the subclass of regular exact LCNF formu
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. st
For random CNF formulae with m clauses, n variables and an unrestricted number of literals per clause the transition from high to low satisfiability can be determined exactly for large n. The critical density m/n turns out to be strongly n-dependent,
The aim of this short note is mainly pedagogical. It summarizes some knowledge about Boolean satisfiability (SAT) and the P=NP? problem in an elementary mathematical language. A convenient scheme to visualize and manipulate CNF formulae is introduced
A heuristic model procedure for determining satisfiability of CNF-formulae is set up and described by nonlinear recursion relations for m (number of clauses), n (number of variables) and clause filling k. The system mimicked by the recursion undergoe