ﻻ يوجد ملخص باللغة العربية
The aim of this short note is mainly pedagogical. It summarizes some knowledge about Boolean satisfiability (SAT) and the P=NP? problem in an elementary mathematical language. A convenient scheme to visualize and manipulate CNF formulae is introduced. Also some results like the formulae for the number of unsatisfied clauses and the number of solutions might be unknown.
For random CNF formulae with m clauses, n variables and an unrestricted number of literals per clause the transition from high to low satisfiability can be determined exactly for large n. The critical density m/n turns out to be strongly n-dependent,
A heuristic model procedure for determining satisfiability of CNF-formulae is set up and described by nonlinear recursion relations for m (number of clauses), n (number of variables) and clause filling k. The system mimicked by the recursion undergoe
Limits on the number of satisfying assignments for CNS instances with n variables and m clauses are derived from various inequalities. Some bounds can be calculated in polynomial time, sharper bounds demand information about the distribution of the n
We present a (full) derandomization of HSSW algorithm for 3-SAT, proposed by Hofmeister, Schoning, Schuler, and Watanabe in [STACS02]. Thereby, we obtain an O(1.3303^n)-time deterministic algorithm for 3-SAT, which is currently fastest.
A generalized 1-in-3SAT problem is defined and found to be in complexity class P when restricted to a certain subset of CNF expressions. In particular, 1-in-kSAT with no restrictions on the number of literals per clause can be decided in polynomial t