ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-exponential complexity of regular linear CNF formulas

78   0   0.0 ( 0 )
 نشر من قبل Bernd Schuh
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Bernd R. Schuh




اسأل ChatGPT حول البحث

The study of regular linear conjunctive normal form (LCNF) formulas is of interest because exact satisfiability (XSAT) is known to be NP-complete for this class of formulas. In a recent paper it was shown that the subclass of regular exact LCNF formulas (XLCNF) is of sub-exponential complexity, i.e. XSAT can be determined in sub-exponential time. Here I show that this class is just a subset of a larger class of LCNF formulas which display this very kind of complexity. To this end I introduce the property of disjointedness of LCNF formulas, measured, for a single clause C, by the number of clauses which have no variable in common with C. If for a given LCNF formula F all clauses have the same disjointedness d we call F d-disjointed and denote the class of such formulas by dLCNF. XLCNF formulas correspond to the special cased=0. One main result of the paper is that the class of all monotone l-regular LCNF formulas which are d-disjointed, with d smaller than some upper bound D, is of sub-exponential complexity. This result can be generalized to show that all monotone, l-regular LCNF formulas F which have a bounded mean disjointedness, are of sub-exponential XSAT-complexity, as well.



قيم البحث

اقرأ أيضاً

55 - Bernd. R. Schuh 2017
Open questions with respect to the computational complexity of linear CNF formulas in connection with regularity and uniformity are addressed. In particular it is proven that any l-regular monotone CNF formula is XSAT-unsatisfiable if its number of c lauses m is not a multiple of l. For exact linear formulas one finds surprisingly that l-regularity implies k-uniformity, with m = 1 + k(l-1)) and allowed k-values obey k(k-1) = 0 (mod l). Then the computational complexity of the class of monotone exact linear and l-regular CNF formulas with respect to XSAT can be determined: XSAT-satisfiability is either trivial, if m is not a multiple of l, or it can be decided in sub-exponential time, namely O(exp(n^^1/2)). Sub-exponential time behaviour for the wider class of regular and uniform linear CNF formulas can be shown for certain subclasses.
We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not ha ve polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity.
Best match graphs (BMGs) are vertex-colored directed graphs that were introduced to model the relationships of genes (vertices) from different species (colors) given an underlying evolutionary tree that is assumed to be unknown. In real-life applicat ions, BMGs are estimated from sequence similarity data. Measurement noise and approximation errors usually result in empirically determined graphs that in general violate characteristic properties of BMGs. The arc modification problems for BMGs aim at correcting such violations and thus provide a means to improve the initial estimates of best match data. We show here that the arc deletion, arc completion and arc editing problems for BMGs are NP-complete and that they can be formulated and solved as integer linear programs. To this end, we provide a novel characterization of BMGs in terms of triples (binary trees on three leaves) and a characterization of BMGs with two colors in terms of forbidden subgraphs.
109 - Aditya Potukuchi 2019
Andreevs Problem states the following: Given an integer $d$ and a subset of $S subseteq mathbb{F}_q times mathbb{F}_q$, is there a polynomial $y = p(x)$ of degree at most $d$ such that for every $a in mathbb{F}_q$, $(a,p(a)) in S$? We show an $text{A C}^0[oplus]$ lower bound for this problem. This problem appears to be similar to the list recovery problem for degree $d$-Reed-Solomon codes over $mathbb{F}_q$ which states the following: Given subsets $A_1,ldots,A_q$ of $mathbb{F}_q$, output all (if any) the Reed-Solomon codewords contained in $A_1times cdots times A_q$. For our purpose, we study this problem when $A_1, ldots, A_q$ are random subsets of a given size, which may be of independent interest.
We extend the definitions of complexity measures of functions to domains such as the symmetric group. The complexity measures we consider include degree, approximate degree, decision tree complexity, sensitivity, block sensitivity, and a few others. We show that these complexity measures are polynomially related for the symmetric group and for many other domains. To show that all measures but sensitivity are polynomially related, we generalize classical arguments of Nisan and others. To add sensitivity to the mix, we reduce to Huangs sensitivity theorem using pseudo-characters, which witness the degree of a function. Using similar ideas, we extend the characterization of Boolean degree 1 functions on the symmetric group due to Ellis, Friedgut and Pilpel to the perfect matching scheme. As another application of our ideas, we simplify the characterization of maximum-size $t$-intersecting families in the symmetric group and the perfect matching scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا