ﻻ يوجد ملخص باللغة العربية
We review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasilievs equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes. A perturbative construction of solutions with the symmetries of a domain wall is described as well. Furthermore, we review two proposed perturbative schemes: one based on perturbative treatment of the twistor space field equations followed by inverting Fronsdal kinetic terms using standard Greens functions; and an alternative scheme based on solving the twistor space field equations exactly followed by introducing the spacetime dependence using perturbatively defined gauge functions. Motivated by the need to provide a higher spin invariant characterization of the exact solutions, aspects of a proposal for a geometric description of Vasilievs equation involving an infinite dimensional generalization of anti de Sitter space is revisited and improved.
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the ana
Many black hole solutions of General Relativity are known to be linearly exact. This opens a way to study them in gauge theories that apart from gravity contain fields of higher spin $s>2$. Starting with a black brane in $AdS_4$ we find its free fiel
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various
Higher-spin vertices containing up to quintic interactions at the Lagrangian level are explicitly calculated in the one-form sector of the non-linear unfolded higher-spin equations using a $betato-infty$--shifted contracting homotopy introduced in th
We consider the conformal higher spin (CHS) theory in d=4 that contains the s=1 Maxwell vector, s=2 Weyl graviton and their higher spin s=3,4,... counterparts with higher-derivative box^s kinetic terms. The interacting action for such theory can be f