ﻻ يوجد ملخص باللغة العربية
We consider the conformal higher spin (CHS) theory in d=4 that contains the s=1 Maxwell vector, s=2 Weyl graviton and their higher spin s=3,4,... counterparts with higher-derivative box^s kinetic terms. The interacting action for such theory can be found as the coefficient of the logarithmically divergent part in the induced action for sources coupled to higher spin currents in a free complex scalar field model. We explicitly determine some cubic and quartic interaction vertices in the CHS action from scalar loop integrals. We then compute the simplest tree-level 4-particle scattering amplitudes 11 -> 11, 22 -> 22 and 11 -> 22 and find that after summing up all the intermediate CHS exchanges they vanish. This generalises the vanishing of the scattering amplitude for external conformal scalars interacting via the exchange of all CHS fields found earlier in arXiv:1512.08896. This vanishing should generalise to all scattering amplitudes in the CHS theory and as in the conformal scalar scattering case should be a consequence of the underlying infinite dimensional higher spin symmetry that extends the standard conformal symmetry.
It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains $psl(4|4,mathbb R)$ superalgebr
The S-matrix for each chiral sector of Liouville theory on a cylinder is computed from the loop expansion of correlation functions of a one-dimensional field theory on a circle with a non-local kinetic energy and an exponential potential. This action
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symm
We investigate the relation between the $S$-matrix unitarity ($SS^{dagger}=1$) and the renormalizability, in theories with negative norm states. The relation has been confirmed in many theories, such as gauge theories, Einstein gravity and Lifshitz-t
We develop a general formalism of duality rotations for bosonic conformal spin-$s$ gauge fields, with $sgeq 2$, in a conformally flat four-dimensional spacetime. In the $s=1$ case this formalism is equivalent to the theory of $mathsf{U}(1)$ duality-i