ﻻ يوجد ملخص باللغة العربية
Higher-spin vertices containing up to quintic interactions at the Lagrangian level are explicitly calculated in the one-form sector of the non-linear unfolded higher-spin equations using a $betato-infty$--shifted contracting homotopy introduced in the paper. The problem is solved in a background independent way and for any value of the complex parameter $eta$ in the HS equations. All obtained vertices are shown to be spin-local containing a finite number of derivatives in the spinor space for any given set of spins. The vertices proportional to $eta^2$ and $bar eta^2$ are in addition ultra-local, i.e. zero-forms that enter into the vertex in question are free from the dependence on at least one of the spinor variables $y$ or $bar y$. Also the $eta^2$ and $bar eta^2$ vertices are shown to vanish on any purely gravitational background hence not contributing to the higher-spin current interactions on $AdS_4$. This implies in particular that the gravitational constant in front of the stress tensor is positive being proportional to $etabar eta$. It is shown that the $beta$-shifted homotopy technique developed in this paper can be reinterpreted as the conventional one but in the $beta$-dependent deformed star product.
A new class of shifted homotopy operators in higher-spin gauge theory is introduced. A sufficient condition for locality of dynamical equations is formulated and Pfaffian Locality Theorem identifying a subclass of shifted homotopies that decrease the
Higher-spin theory contains a complex coupling parameter $eta$. Different higher-spin vertices are associated with different powers of $eta$ and its complex conjugate $bar eta$. Using $Z$-dominance Lemma, that controls spin-locality of the higher-spi
New homotopy approach to the analysis of nonlinear higher-spin equations is developed. It is shown to directly reproduce the previously obtained local vertices. Simplest cubic (quartic in Lagrangian nomenclature) higher-spin interaction vertices in f
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various
We consider the holographic duality between 4d type-A higher-spin gravity and a 3d free vector model. It is known that the Feynman diagrams for boundary correlators can be encapsulated in an HS-algebraic twistorial expression. This expression can be