ترغب بنشر مسار تعليمي؟ اضغط هنا

Vibrationally excited water emission at 658 GHz from evolved stars

111   0   0.0 ( 0 )
 نشر من قبل Fabrice Herpin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Baudry




اسأل ChatGPT حول البحث

Several rotational transitions of water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode. In the latter vibrational state of water, the 658 GHz J = 1_1,0-1_0,1 rotational transition is often strong and seems to be widespread in late-type stars. Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the APEX telescope equipped with the SEPIA receiver. The 13CO J=6-5 line was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the 658 GHz line properties with our H2O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J=2-1, v=1 maser lines. All stars show 658 GHz emission with a peak flux density in the range 50-70 Jy to 2000-3000 Jy. We have shown that the 658 GHz line is masing and we found that the 658 GHz velocity extent tends to be correlated with that of the SiO maser suggesting that both emission lines are excited in circumstellar layers close to the central star. Broad and stable line profiles are observed at 658 GHz. This could indicate maser saturation although we have tentatively provided first information on time variability at 658 GHz.

قيم البحث

اقرأ أيضاً

Discovered in 1995 at the Caltech Submillimeter Observatory (CSO), the vibrationally-excited water maser line at 658 GHz (455 micron) is seen in oxygen-rich giant and supergiant stars. Because this maser can be so strong (up to thousands of Janskys), it was very helpful during the commissioning phase of the highest frequency band (620-700 GHz) of the Submillimeter Array (SMA) interferometer. From late 2002 to early 2006, brief attempts were made to search for emission from additional sources beyond the original CSO survey. These efforts have expanded the source count from 10 to 16. The maser emission appears to be quite compact spatially, as expected from theoretical considerations; thus these objects can potentially be used as atmospheric phase calibrators. Many of these objects also exhibit maser emission in the vibrationally-excited SiO maser at 215 GHz. Because both maser lines likely originate from a similar physical region, these objects can be used to test techniques of phase transfer calibration between millimeter and submillimeter bands. The 658 GHz masers will be important beacons to assess the performance of the Atacama Large Millimeter Array (ALMA) in this challenging high-frequency band.
We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS o bservations at $70mu$m and $160mu$m and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 $mu$m emission ranges from 0.01 to 0.16 pc with an average of $sim40%$ of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature ($T$), spectral index of dust emissivity ($beta$) and dust column density ($Sigma$) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.
Rotational spectra in four new excited vibrational levels of the linear carbon chain radical C$_4$H radical were observed in the millimeter band between 69 and 364 GHz in a low pressure glow discharge, and two of these were observed in a supersonic m olecular beam between 19 and 38 GHz. All have rotational constants within 0.4% of the $^2Sigma^+$ ground vibrational state of C$_4$H and were assigned to new bending vibrational levels, two each with $^2Sigma$ and $^2Pi$ vibrational symmetry. The new levels are tentatively assigned to the $1 u_6$ and $1 u_5$ bending vibrational modes (both with $^2Pi$ symmetry), and the $1 u_6 + 1 u_7$ and $1 u_5 + 1 u_6$ combination levels ($^2Sigma$ symmetry) on the basis of the derived spectroscopic constants, relative intensities in our discharge source, and published laser spectroscopic and quantum calculations. Prior spectroscopic constants in the $1 u_7$ and $2 u_7$ levels were refined. Also presented are interferometric maps of the ground state and the $1 u_7$ level obtained with the SMA near 257 GHz which show that C$_4$H is present near the central star in IRC+10216. We found no evidence with the SMA for the new vibrationally excited levels of C$_4$H at a peak flux density averaged over a $3^{primeprime}$ synthesized beam of $ge 0.15$ Jy/beam in the 294-296 and 304-306 GHz range, but it is anticipated that rotational lines in the new levels might be observed in IRC+10216 when ALMA attains its full design capability.
Rotational transitions in vibrationally excited AlO and TiO -- two possible precursors of dust -- were observed in the 300 GHz range (1 mm wavelength) towards the oxygen rich AGB stars R Dor and IK Tau with ALMA, and vibrationally excited AlO was obs erved towards the red supergiant VY CMa with the SMA. The $J=11 to 10$ transition of TiO in the $v=1~{rm{and}}~2$ levels, and the $N = 9 to 8$ transition in the $v=2$ level of AlO were identified towards R Dor; the $J=11 to 10$ line of TiO was identified in the $v=1$ level towards IK Tau; and two transitions in the $v=1~{rm{and}}~2$ levels of AlO were identified towards VY CMa. The newly-derived high vibrational temperature of TiO and AlO in R Dor of $1800 pm 200$ K, and prior measurements of the angular extent confirm that the majority of the emission is from a region within $lesssim2R_{star}$ of the central star. A full radiative transfer analysis of AlO in R Dor yielded a fractional abundance of $sim$3% of the solar abundance of Al. From a similar analysis of TiO a fractional abundance of $sim78$% of the solar abundance of Ti was found. The observations provide indirect evidence that TiO is present in a rotating disk close to the star. Further observations in the ground and excited vibrational levels are needed to determine whether AlO, TiO, and TiO$_2$ are seeds of the Al$_2$O$_3$ dust in R Dor, and perhaps in the gravitationally bound dust shells in other AGB stars with low mass loss rates.
103 - P.N. Diep , D.T. Hoai , P.T. Nhung 2015
Studies of the CO and HI radio emission of some evolved stars are presented using data collected by the IRAM Plateau de Bure interferometer and Pico Veleta telescope, the Nanc{c}ay Radio Telescope and the JVLA and ALMA arrays. Approximate axial symme try of the physical and kinematic properties of the circumstellar envelope (CSE) are observed in CO emission, in particular, from RS Cnc, EP Aqr and the Red Rectangle. A common feature is the presence of a bipolar outflow causing an enhanced wind velocity in the polar directions. HI emission extends to larger radial distances than probed by CO emission and displays features related to the interaction between the stellar outflow and interstellar matter. With its unprecedented sensitivity, FAST will open a new window on such studies. Its potential in this domain is briefly illustrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا