ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Dust Emission from Nearby Evolved Stars

90   0   0.0 ( 0 )
 نشر من قبل Thavisha Dharmawardena
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS observations at $70mu$m and $160mu$m and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 $mu$m emission ranges from 0.01 to 0.16 pc with an average of $sim40%$ of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature ($T$), spectral index of dust emissivity ($beta$) and dust column density ($Sigma$) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.

قيم البحث

اقرأ أيضاً

We study a group of evolved M-stars in the Large Magellanic Cloud, characterized by a peculiar spectral energy distribution. While the $9.7~mu$m feature arises from silicate particles, the whole infrared data seem to suggest the presence of an additi onal featureless dust species. We propose that the circumstellar envelopes of these sources are characterized by a dual dust chemistry, with an internal region, harbouring carbonaceous particles, and an external zone, populated by silicate, iron and alumina dust grains. Based on the comparison with results from stellar modelling that describe the dust formation process, we deduce that these stars descend from low-mass ($M < 2~M_{odot}$) objects, formed $1-4$ Gyr ago, currently evolving either in the post-AGB phase or through an after-pulse phase, when the shell CNO nuclear activity is temporarily extinguished. Possible observations able to confirm or disregard the present hypothesis are discussed.
Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar systems Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own . The Herschel Open Time Key Programmes DUst around NEarby Stars (DUNES) and Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around $sim$ 20% of stars. Herschels high angular resolution ($sim$ 7 FWHM at 100 $mu$m) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the Herschel PACS instrument. Combining these new images and photometry with ancilliary data from the literature, we undertook simultaneous multi-wavelength modelling of the discs radial profiles and spectral energy distributions using three different methodologies: single annulus, modified black body, and a radiative transfer code. We present the first far-infrared spatially resolved images of these discs and new single-component debris disc models. We characterize the capacity of the models to reproduce the disc parameters based on marginally resolved emission through analysis of two sets of simulated systems (based on the HIP 22263 and HIP 62207 data) with the noise levels typical of the Herschel images. We find that the input parameter values are recovered well at noise levels attained in the observations presented here.
We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass ($M < 8~M_{odot}$) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are $E(B-V)=1.85$ mag and $d=0.77$ Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for $40%$ of the sources brighter than the tip of the red giant branch. Most of these stars descend from $sim 1.1-1.3~M_{odot}$ progenitors, formed during the major epoch of star formation, which occurred $sim 2.5$ Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is $7times 10^{-6}~M_{odot}$/yr.
Common Envelope (CE) systems are the result of Roche lobe overflow in interacting binaries. The subsequent evolution of the CE, its ejection and the formation of dust in its ejecta while the primary is on the Red Giant Branch, gives rise to a recentl y-identified evolutionary class -- dusty post-RGB stars. Their spectral energy distributions (SEDs) suggest that their mass-ejecta are similar to dusty post-Asymptotic Giant Branch (post-AGB) stars. We have modeled the SEDs of a select sample of post-RGB and post-AGB stars in the Large Magellanic Cloud (LMC), quantified the total dust mass (and gas mass assuming gas-to-dust ratio) in the disks and shells and set constraints on the dust grain compositions and sizes. We find that the shell masses in the post-RGBs are generally less than those in post-AGBs, with the caveat that a substantial amount of mass in both types of objects may lie in cold, extended shells. Our models suggest that circumstellar disks, when present, are geometrically thick, flared structures with a substantial opening angle, consistent with numerical simulations of CE evolution (CEE). Comparison of our model dust mass values with the predictions of dust production during CEE on the RGB suggest that CEE occurred near or at the top of the RGB for the post-RGB sources in our sample. A surprising result is that the ejected dust in some post-RGB sources appears to be carbon-rich, providing independent support for the hypothesis of binary interaction leading to the formation of dusty post-RGB objects.
78 - Francisco Colomer 2009
High resolution maps of maser emission provide very detailed information on processes occurring in circumstellar envelopes of late-type stars. A particularly detailed picture of the innermost shells around AGB stars is provided by SiO masers. Conside rable progress is being made to provide astrometrically aligned multi-transition simultaneous observations of these masers, which are needed to better constrain the models. In view of the large amount of high quality data available, models should now be developed to fully explain all maser characteristics together (spatial distribution, variability, etc). New generation instruments (VERA, VSOP-2), new observational techniques (frequency-phase transfer), and new models promise important improvements of our knowledge on this topic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا