ﻻ يوجد ملخص باللغة العربية
The concept of a nano-actuator that uses ferroelectric switching to generate enhanced displacements is explored using a phase-field model. The actuator has a ground state in the absence of applied electric field that consists of polarized domains oriented to form a flux closure. When electric field is applied, the polarization reorients through ferroelectric switching and produces strain. The device is mechanically biased by a substrate and returns to the ground state when electric field is removed, giving a repeatable actuation cycle. The mechanical strains which accompany ferroelectric switching are several times greater than the strains attained due to the piezoelectric effect alone. We also demonstrate a second design of actuator in which the displacements are further increased by the bending of a ferroelectric beam. Phase-field modelling is used to track the evolution of domain patterns in the devices during the actuation cycle, and to study the design parameters so as to enhance the achievable actuation strains.
The ferroelectric polarization switching in ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO) in the HZO/Al2O3 ferroelectric/dielectric stack is investigated systematically by capacitance-voltage and polarization-voltage measurements. The thi
We report on the fabrication of organic multiferroic tunnel junction (OMFTJ) based on an organic barrier of Poly(vinylidene fluoride) (PVDF):Fe3O4 nanocomposite. By adding Fe3O4 nanoparticles into the PVDF barrier, we found that the ferroelectric pro
Ferroelectric tunnel junctions (FTJ) based on hafnium zirconium oxide (Hf1-xZrxO2; HZO) are a promising candidate for future applications, such as low-power memories and neuromorphic computing. The tunneling electroresistance (TER) is tunable through
Ferroelectricity, especially in hafnia-based thin films at nanosizes, has been rejuvenated in the fields of low-power, nonvolatile and Si-compatible modern memory and logic applications. Despite tremendous efforts to explore the formation of the meta
In this work, we theoretically and experimentally investigate the working principle and non-volatile memory (NVM) functionality of 2D $alpha$-In$_2$Se$_3$ based ferroelectric-semiconductor-metal-junction (FeSMJ). First, we analyze the semiconducting