ﻻ يوجد ملخص باللغة العربية
The ferroelectric polarization switching in ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO) in the HZO/Al2O3 ferroelectric/dielectric stack is investigated systematically by capacitance-voltage and polarization-voltage measurements. The thickness of dielectric layer is found to have a determinant impact on the ferroelectric polarization switching of ferroelectric HZO. A suppression of ferroelectricity is observed with thick dielectric layer. In the gate stacks with thin dielectric layers, a full polarization switching of the ferroelectric layer is found possible by the proposed leakage-current-assist mechanism through the ultrathin dielectric layer. Theoretical simulation results agree well with experimental data. This work clarifies some of the critical parts of the long-standing confusions and debating related to negative capacitance field-effect transistors (NC-FETs) concepts and experiments.
In this work, we demonstrate high performance indium-tin-oxide (ITO) transistors with the channel thickness down to 1 nm and ferroelectric Hf0.5Zr0.5O2 as gate dielectric. On-current of 0.243 A/mm is achieved on sub-micron gate-length ITO transistors
It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable
Ferroelectric field-effect transistors employ a ferroelectric material as a gate insulator, the polarization state of which can be detected using the channel conductance of the device. As a result, the devices are of potential to use in non-volatile
We investigate the polarization switching mechanism in ferroelectric-dielectric (FE-DE) stacks and its dependence on the dielectric thickness (TDE). We fabricate HZO-Al2O3 (FE-DE) stack and experimentally demonstrate a decrease in remnant polarizatio
The discovery of ferroelectric HfO2 in thin films and more recently in bulk is an important breakthrough because of its silicon-compatibility and unexpectedly persistent polarization at low dimensions, but the origin of its ferroelectricity is still