ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving mechanical sensor performance through larger damping

55   0   0.0 ( 0 )
 نشر من قبل Vincent Sauer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mechanical resonances are used in a wide variety of devices; from smart phone accelerometers to computer clocks and from wireless communication filters to atomic force microscope sensors. Frequency stability, a critical performance metric, is generally assumed to be tantamount to resonance quality factor (the inverse of the linewidth and of the damping). Here we show that frequency stability of resonant nanomechanical sensors can generally be made independent of quality factor. At high bandwidths, we show that quality factor reduction is completely mitigated by increases in signal to noise ratio. At low bandwidths, strikingly, increased damping leads to better stability and sensor resolution, with improvement proportional to damping. We confirm the findings by demonstrating temperature resolution of 50 mu K at 200 Hz bandwidth. These results open the door for high performance ultrasensitive resonant sensors in gaseous or liquid environments, single cell nanocalorimetry, nanoscale gas chromatography, and atmospheric pressure nanoscale mass spectrometry.



قيم البحث

اقرأ أيضاً

We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induc ed transparency configuration. By varying the amplitudes of drive and probe tones, the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the graphene resonator. Increasing the optomechanical backaction, we observe a nonlinear regime not described by a Duffing response that includes new instabilities of the mechanical response.
153 - A. Eichler , J. Moser , J. Chaste 2011
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at the mesoscopic scale. Here, we have discovered that the dynamics of nanotube and graphene resonators is in fact highly exotic. We propose an unprecedented scenario where mechanical dissipation is entirely determined by nonlinear damping. As a striking consequence, the quality factor Q strongly depends on the amplitude of the motion. This scenario is radically different from that of other resonators, whose dissipation is dominated by a linear damping term. We believe that the difference stems from the reduced dimensionality of carbon nanotubes and graphene. Besides, we exploit the nonlinear nature of the damping to improve the figure of merit of nanotube/graphene resonators.
253 - Yuchen Peng , Frank Gaitan 2014
Successful implementation of a fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold $P_{a}$ exists for any quantum gate that is to be used in such a computation. Specifically, the error probability $P_{e}$ for such a gate must fall below the accuracy threshold: $P_{e} < P_{a}$. Estimates of $P_{a}$ vary widely, though $P_{a}sim 10^{-4}$ has emerged as a challenging target for hardware designers. In this paper we present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. We illustrate this approach by applying it to all gates in a universal set of quantum gates produced using non-adiabatic rapid passage that has appeared in the literature. Performance improvements are substantial, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall well below the target threshold of $10^{-4}$.
75 - Ya. B. Bazaliy 2020
A mechanical equivalent system is introduced to mimic the behavior of multilayer structures with diffusive spin transport. The analogy allows one to use existing mechanical intuition to predict the influence of various parameters on spin torques and spin-dependent magnetoresistance. In particular, it provides an understanding of the sign-changing behavior of spin torque in asymmetric F/N/F spin valves. It further helps to uncover the physical reason behind the singular behavior of spin magnetoresistance in devices with ultra-thin N-layers.
We present a new paradigm for computation of radiation spectra in the non-linear regime of operation of inverse Compton sources characterized by high laser intensities. The resulting simulations show an unprecedented level of agreement with the exper iments. Increasing the laser intensity changes the longitudinal velocity of the electrons during their collision, leading to considerable non-linear broadening in the scattered radiation spectra. The effects of such ponderomotive broadening are so deleterious that most inverse Compton sources either remain at low laser intensities or pay a steep price to operate at a small fraction of the physically possible peak spectral output. This ponderomotive broadening can be reduced by a suitable frequency modulation (also referred to as chirping, which is not necessarily linear) of the incident laser pulse, thereby drastically increasing the peak spectral density. This frequency modulation, included in the new code as an optional functionality, is used in simulations to motivate the experimental implementation of this transformative technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا