ﻻ يوجد ملخص باللغة العربية
We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induced transparency configuration. By varying the amplitudes of drive and probe tones, the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the graphene resonator. Increasing the optomechanical backaction, we observe a nonlinear regime not described by a Duffing response that includes new instabilities of the mechanical response.
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at
In [Phys. Rev. Lett. vol. 119, p. 133901 (2017)] it was argued that two parallel graphene layers in the presence of electron drift support unstable plasmon modes. Here we show that the predicted plasmon instability is an artifact of errors upon evalu
Ultralight mechanical resonators based on low-dimensional materials are well suited as exceptional transducers of minuscule forces or mass changes. However, the low dimensionality also provides a challenge to minimize resistive losses and heating. He
The combination of low mass density, high frequency, and high quality-factor of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force sensing/mass sensing, and exploring the quantum reg
In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, while time domain techniques such as ringdown measurements can separate