ﻻ يوجد ملخص باللغة العربية
We consider a scenario where we wish to bring a closed system of known Hilbert space dimension $d_S$ (the target), subject to an unknown Hamiltonian evolution, back to its quantum state at a past time $t_0$. The target is out of our control: this means that we ignore both its free Hamiltonian and how the system interacts with other quantum systems we may use to influence it. Under these conditions, we prove that there exist protocols within the framework of non-relativistic quantum physics which reset the target system to its exact quantum state at $t_0$. Each resetting protocol is successful with non-zero probability for all possible free Hamiltonians and interaction unitaries, save a subset of zero measure. When the target is a qubit and the interaction is sampled from the Haar measure, the simplest resetting circuits have a significant average probability of success and their implementation is within reach of current quantum technologies. Finally, we find that, in case the resetting protocol fails, it is possible to run a further protocol that, if successful, undoes both the natural evolution of the target and the effects of the failed protocol over the latter. By chaining in this fashion several such protocols, one can substantially increase the overall probability of a successful resetting.
Quantum resetting protocols allow a quantum system to be sent to a state in the past by making it interact with quantum probes when neither the free evolution of the system nor the interaction is controlled. We experimentally verify the simplest non-
We show that there exist non-relativistic scattering experiments which, if successful, freeze out, speed up or even reverse the free dynamics of any ensemble of quantum systems present in the scattering region. This time translation effect is univers
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorpo
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems
Quantum systems can be controlled by other quantum systems in a reversible way, without any information leaking to the outside of the system-controller compound. Such coherent quantum control is deterministic, is less noisy than measurement-based fee