ترغب بنشر مسار تعليمي؟ اضغط هنا

Lotka-Volterra systems with stochastic resetting

123   0   0.0 ( 0 )
 نشر من قبل Denis Boyer
 تاريخ النشر 2018
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorporated in the model through a stochastic resetting dynamics of the predators to the prey patch. We solve in the long time limit the rate equations of Lotka-Volterra type that describe the evolution of the two species densities. Fixing the demographic parameters and the Levy exponent, the total population of predators can be maximized for a certain value of the resetting rate. This optimal value achieves a compromise between over-exploitation and under-utilization of the habitat. Similarly, at fixed resetting rate, there exists a Levy exponent which is optimal regarding predator abundance. These findings are supported by 2D stochastic simulations and show that the combined effects of diffusion and resetting can broadly extend the region of species coexistence in ecosystems facing resources scarcity.



قيم البحث

اقرأ أيضاً

380 - Uwe C. Tauber 2012
Field theory tools are applied to analytically study fluctuation and correlation effects in spatially extended stochastic predator-prey systems. In the mean-field rate equation approximation, the classic Lotka-Volterra model is characterized by neutr al cycles in phase space, describing undamped oscillations for both predator and prey populations. In contrast, Monte Carlo simulations for stochastic two-species predator-prey reaction systems on regular lattices display complex spatio-temporal structures associated with persistent erratic population oscillations. The Doi-Peliti path integral representation of the master equation for stochastic particle interaction models is utilized to arrive at a field theory action for spatial Lotka-Volterra models in the continuum limit. In the species coexistence phase, a perturbation expansion with respect to the nonlinear predation rate is employed to demonstrate that spatial degrees of freedom and stochastic noise induce instabilities toward structure formation, and to compute the fluctuation corrections for the oscillation frequency and diffusion coefficient. The drastic downward renormalization of the frequency and the enhanced diffusivity are in excellent qualitative agreement with Monte Carlo simulation data.
We study several lattice random walk models with stochastic resetting to previously visited sites which exhibit a phase transition between an anomalous diffusive regime and a localization regime where diffusion is suppressed. The localized phase sett les above a critical resetting rate, or rate of memory use, and the probability density asymptotically adopts in this regime a non-equilibrium steady state similar to that of the well known problem of diffusion with resetting to the origin. The transition occurs because of the presence of a single impurity site where the resetting rate is lower than on other sites, and around which the walker spontaneously localizes. Near criticality, the localization length diverges with a critical exponent that falls in the same class as the self-consistent theory of Anderson localization of waves in random media. The critical dimensions are also the same in both problems. Our study provides analytically tractable examples of localization transitions in path-dependent, reinforced stochastic processes, which can be also useful for understanding spatial learning by living organisms.
Stochastic processes offer a fundamentally different paradigm of dynamics than deterministic processes that students are most familiar with, the most prominent example of the latter being Newtons laws of motion. Here, we discuss in a pedagogical mann er a simple and illustrative example of stochastic processes in the form of a particle undergoing standard Brownian diffusion, with the additional feature of the particle resetting repeatedly and at random times to its initial condition. Over the years, many different variants of this simple setting have been studied, including extensions to many-body interacting systems, all of which serve as illustrations of peculiar static and dynamic features that characterize stochastic dynamics at long times. We will provide in this work a brief overview of this active and rapidly evolving field by considering the arguably simplest example of Brownian diffusion in one dimension. Along the way, we will learn about some of the general techniques that a physicist employs to study stochastic processes.
101 - Arnab Pal , Saar Rahav 2017
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [EPL, 113, (2016)] can be recovered from this integral fluctuation theorem with the help of Jensens inequality.
81 - Pascal Grange 2020
The model of binary aggregation with constant kernel is subjected to stochastic resetting: aggregates of any size explode into monomers at independent stochastic times. These resetting times are Poisson distributed, and the rate of the process is cal led the resetting rate. The master equation yields a Bernoulli-type equation in the generating function of the concentration of aggregates of any size, which can be solved exactly. This resetting prescription leads to a non-equilibrium steady state for the densities of aggregates, which is a function of the size of the aggregate, rescaled by a function of the resetting rate. The steady-state density of aggregates of a given size is maximised if the resetting rate is set to the quotient of the aggregation rate by the size of the aggregate (minus one).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا