ﻻ يوجد ملخص باللغة العربية
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [EPL, 113, (2016)] can be recovered from this integral fluctuation theorem with the help of Jensens inequality.
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and inves
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorpo
Stochastic processes offer a fundamentally different paradigm of dynamics than deterministic processes that students are most familiar with, the most prominent example of the latter being Newtons laws of motion. Here, we discuss in a pedagogical mann
The fluctuations of a Markovian jump process with one or more unidirectional transitions, where $R_{ij} >0$ but $R_{ji} =0$, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theor
Stochastic resetting, a diffusive process whose amplitude is reset to the origin at random times, is a vividly studied strategy to optimize encounter dynamics, e.g., in chemical reactions. We here generalize the resetting step by introducing a random