ﻻ يوجد ملخص باللغة العربية
Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall.
In purely c-axis oriented PbZr$_{0.2}$Ti$_{0.8}$O$_3$ ferroelectric thin films, a lateral piezoresponse force microscopy signal is observed at the position of 180{deg}domain walls, where the out-of-plane oriented polarization is reversed. Using elect
While an ideal antiparallel ferroelectric wall is considered a unit cell in width (~0.5nm), we show using phase field modeling that the threshold field for moving this wall dramatically drops by 2-3 orders of magnitude if the wall were diffuse by onl
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferro
Modulating the polarization of a beam of quantum particles is a powerful method to tailor the macroscopic properties of the ensuing energy flux as it directly influences the way in which its quantum constituents interact with other particles, waves o
Using multiscaling analysis, we compare the characteristic roughening of ferroelectric domain walls in PZT thin films with numerical simulations of weakly pinned one-dimensional interfaces. Although at length scales up to a length scale greater or eq