ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Dirac particles in a Poschl-Teller waveguide

85   0   0.0 ( 0 )
 نشر من قبل Richard Hartmann R
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Poschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the minimum strength of the potential required to hold a bound state of zero energy. Applications for smooth electron waveguides in 2D Dirac-Weyl systems are discussed.



قيم البحث

اقرأ أيضاً

Starting with the Gaudin-like Bethe ansatz equations associated with the quasi-exactly solved (QES) exceptional points of the asymmetric quantum Rabi model (AQRM) a spectral equivalence is established with QES hyperbolic Schrodinger potentials on the line. This leads to particular QES Poschl-Teller potentials. The complete spectral equivalence is then established between the AQRM and generalised Poschl-Teller potentials. This result extends a previous mapping between the symmetric quantum Rabi model and a QES Poschl-Teller potential. The complete spectral equivalence between the two systems suggests that the physics of the generalised Poschl-Teller potentials may also be explored in experimental realisations of the quantum Rabi model.
Dirac particles have been notoriously difficult to confine. Implementing a curved space Dirac equation solver based on the quantum Lattice Boltzmann method, we show that curvature in a 2-D space can confine a portion of a charged, mass-less Dirac fer mion wave-packet. This is equivalent to a finite probability of confining the Dirac fermion within a curved space region. We propose a general power law expression for the probability of confinement with respect to average spatial curvature for the studied geometry.
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realising an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
The quantum phase-space dynamics driven by hyperbolic Poschl-Teller (PT) potentials is investigated in the context of the Weyl-Wigner quantum mechanics. The obtained Wigner functions for quantum superpositions of ground and first-excited states exhib it some non-classical and non-linear patterns which are theoretically tested and quantified according to a non-gaussian continuous variable framework. It comprises the computation of quantifiers of non-classicality for an anharmonic two-level system where non-Liouvillian features are identified through the phase-space portrait of quantum fluctuations. In particular, the associated non-gaussian profiles are quantified by measures of {em kurtosis} and {em negative entropy}. As expected from the PT {em quasi}-harmonic profile, our results suggest that quantum wells can work as an experimental platform that approaches the gaussian behavior in the investigation of the interplay between classical and quantum scenarios. Furthermore, it is also verified that the Wigner representation admits the construction of a two-particle bipartite quantum system of continuous variables, $A$ and $B$, identified by $sum_{i,j=0,1}^{i eq j}vert i_{_A}rangleotimesvert j_{_B}rangle$, which are shown to be separable under gaussian and non-gaussian continuous variable criteria.
We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single delta-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenome na. These resonances are explained in terms of quasi-bound states both by using a direct solution of the Schroedinger equation and by studying the Greens function of the system. Using the Greens function we calculate the survival probability as well as the power absorption and show the influence of the quasi-bound states on these two quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا