ﻻ يوجد ملخص باللغة العربية
The quantum phase-space dynamics driven by hyperbolic Poschl-Teller (PT) potentials is investigated in the context of the Weyl-Wigner quantum mechanics. The obtained Wigner functions for quantum superpositions of ground and first-excited states exhibit some non-classical and non-linear patterns which are theoretically tested and quantified according to a non-gaussian continuous variable framework. It comprises the computation of quantifiers of non-classicality for an anharmonic two-level system where non-Liouvillian features are identified through the phase-space portrait of quantum fluctuations. In particular, the associated non-gaussian profiles are quantified by measures of {em kurtosis} and {em negative entropy}. As expected from the PT {em quasi}-harmonic profile, our results suggest that quantum wells can work as an experimental platform that approaches the gaussian behavior in the investigation of the interplay between classical and quantum scenarios. Furthermore, it is also verified that the Wigner representation admits the construction of a two-particle bipartite quantum system of continuous variables, $A$ and $B$, identified by $sum_{i,j=0,1}^{i eq j}vert i_{_A}rangleotimesvert j_{_B}rangle$, which are shown to be separable under gaussian and non-gaussian continuous variable criteria.
We obtain the quantized momentum solutions, $mathcal{P}_{n}$, of the Feinberg-Horodecki equation. We study the space-like coherent states for the space-like counterpart of the Schrodinger equation with trigonometric Poschl-Teller potential which is c
Starting with the Gaudin-like Bethe ansatz equations associated with the quasi-exactly solved (QES) exceptional points of the asymmetric quantum Rabi model (AQRM) a spectral equivalence is established with QES hyperbolic Schrodinger potentials on the
We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Poschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are de
Providing the microscopic behavior of a thermalization process has always been an intriguing issue. There are several models of thermalization, which often requires interaction of the system under consideration with the microscopic constituents of th
We improve upon the simple model studied by Casadio and Orlandi [JHEP 1308 (2013) 025] for a black hole as a condensate of gravitons. Instead of the harmonic oscillator potential, the Poschl-Teller potential is used, which allows for a continuum of s